Example #1
0
def run_toy(lr=0.001,
            seqlen=8,
            batsize=10,
            epochs=1000,
            embdim=32,
            innerdim=64,
            z_dim=32,
            noaccumulate=False,
            usebase=False,
            ):
    # generate some toy data
    N = 1000
    data, vocab = gen_toy_data(N, seqlen=seqlen, mode="copymiddlefixed")
    datasm = q.StringMatrix()
    datasm.set_dictionary(vocab)
    datasm.tokenize = lambda x: list(x)
    for data_e in data:
        datasm.add(data_e)
    datasm.finalize()

    real_data = q.dataset(datasm.matrix)
    gen_data_d = q.gan.gauss_dataset(z_dim, len(real_data))
    disc_data = q.datacat([real_data, gen_data_d], 1)

    gen_data = q.gan.gauss_dataset(z_dim)

    disc_data = q.dataload(disc_data, batch_size=batsize, shuffle=True)
    gen_data = q.dataload(gen_data, batch_size=batsize, shuffle=True)

    discriminator = Discriminator(datasm.D, embdim, innerdim)
    generator = Decoder(datasm.D, embdim, z_dim, "<START>", innerdim, maxtime=seqlen)

    SeqGAN = SeqGAN_Base if usebase else SeqGAN_DCL

    disc_model = SeqGAN(discriminator, generator, gan_mode=q.gan.GAN.DISC_TRAIN, accumulate=not noaccumulate)
    gen_model = SeqGAN(discriminator, generator, gan_mode=q.gan.GAN.GEN_TRAIN, accumulate=not noaccumulate)

    disc_optim = torch.optim.Adam(q.params_of(discriminator), lr=lr)
    gen_optim = torch.optim.Adam(q.params_of(generator), lr=lr)

    disc_trainer = q.trainer(disc_model).on(disc_data).optimizer(disc_optim).loss(q.no_losses(2))
    gen_trainer = q.trainer(gen_model).on(gen_data).optimizer(gen_optim).loss(q.no_losses(2))

    gan_trainer = q.gan.GANTrainer(disc_trainer, gen_trainer)

    gan_trainer.run(epochs, disciters=5, geniters=1, burnin=500)

    # print some predictions:
    with torch.no_grad():
        rvocab = {v: k for k, v in vocab.items()}
        q.batch_reset(generator)
        eval_z = torch.randn(50, z_dim)
        eval_y, _ = generator(eval_z)
        for i in range(len(eval_y)):
            prow = "".join([rvocab[mij] for mij in eval_y[i].numpy()])
            print(prow)

    print("done")
Example #2
0
def run_cond_toy(lr=0.001,
                 seqlen=8,
                 batsize=10,
                 epochs=1000,
                 embdim=5,
                 innerdim=32,
                 z_dim=5,
                 usebase=False,
                 nrexamples=1000):
    data, vocab = gen_toy_data(nrexamples, seqlen=seqlen, mode="twointerleaveboth")
    datasm = q.StringMatrix()
    datasm.set_dictionary(vocab)
    datasm.tokenize = lambda x: list(x)
    for data_e in data:
        datasm.add(data_e)
    datasm.finalize()

    real_data = q.dataset(datasm.matrix)
    shuffled_datasm_matrix = datasm.matrix + 0
    np.random.shuffle(shuffled_datasm_matrix)
    fake_data = q.dataset(shuffled_datasm_matrix)
    disc_data = q.datacat([real_data, fake_data], 1)

    gen_data = q.dataset(datasm.matrix)

    disc_data = q.dataload(disc_data, batch_size=batsize, shuffle=True)
    gen_data = q.dataload(gen_data, batch_size=batsize, shuffle=True)

    discr = Discriminator(datasm.D, embdim, innerdim)
    decoder = Decoder_Cond(datasm.D, embdim, z_dim, "<START>", innerdim)

    disc_model = SeqGAN_Cond(discr, decoder, gan_mode=q.gan.GAN.DISC_TRAIN)
    gen_model = SeqGAN_Cond(discr, decoder, gan_mode=q.gan.GAN.GEN_TRAIN)

    disc_optim = torch.optim.Adam(q.params_of(discr), lr=lr)
    gen_optim = torch.optim.Adam(q.params_of(decoder), lr=lr)

    disc_trainer = q.trainer(disc_model).on(disc_data).optimizer(disc_optim).loss(q.no_losses(2))
    gen_trainer = q.trainer(gen_model).on(gen_data).optimizer(gen_optim).loss(q.no_losses(2))

    gan_trainer = q.gan.GANTrainer(disc_trainer, gen_trainer)

    gan_trainer.run(epochs, disciters=5, geniters=1, burnin=500)

    with torch.no_grad():
        rvocab = {v: k for k, v in vocab.items()}
        q.batch_reset(decoder)
        eval_z = torch.tensor(datasm.matrix[:50])
        eval_y, _, _, _ = decoder(eval_z)
        for i in range(len(eval_y)):
            prow = "".join([rvocab[mij] for mij in eval_y[i].numpy()])
            print(prow)

    print("done")
def run(lr=0.001):
    x = np.random.random((1000, 5)).astype("float32")
    y = np.random.randint(0, 5, (1000, )).astype("int64")

    trainloader = q.dataload(x[:800], y[:800], batch_size=100)
    validloader = q.dataload(x[800:], y[800:], batch_size=100)

    m = torch.nn.Sequential(torch.nn.Linear(5, 100), torch.nn.Linear(100, 5))

    m[1].weight.requires_grad = False

    losses = q.lossarray(torch.nn.CrossEntropyLoss())

    params = m.parameters()
    for param in params:
        print(param.requires_grad)

    init_val = m[1].weight.detach().numpy()

    optim = torch.optim.Adam(q.params_of(m), lr=lr)

    trainer = q.trainer(m).on(trainloader).loss(losses).optimizer(
        optim).epochs(100)

    # for b, (i, e) in trainer.inf_batches():
    #     print(i, e)

    validator = q.tester(m).on(validloader).loss(losses)

    q.train(trainer, validator).run()

    new_val = m[1].weight.detach().numpy()

    print(np.linalg.norm(new_val - init_val))
Example #4
0
def run(lr=20.,
        dropout=0.2,
        dropconnect=0.2,
        gradnorm=0.25,
        epochs=25,
        embdim=200,
        encdim=200,
        numlayers=2,
        seqlen=35,
        batsize=20,
        eval_batsize=10,
        cuda=False,
        gpu=0,
        test=False):
    tt = q.ticktock("script")
    device = torch.device("cpu")
    if cuda:
        device = torch.device("cuda", gpu)
    tt.tick("loading data")
    train_batches, valid_batches, test_batches, D = \
        load_data(batsize=batsize, eval_batsize=eval_batsize, seqlen=seqlen)
    tt.tock("data loaded")
    print("{} batches in train".format(len(train_batches)))

    tt.tick("creating model")
    dims = [embdim] + ([encdim] * numlayers)
    m = RNNLayer_LM(*dims, worddic=D, dropout=dropout)

    if test:
        for i, batch in enumerate(train_batches):
            y = m(batch[0])
            if i > 5:
                break
        print(y.size())

    loss = q.SeqKLLoss(time_average=True, size_average=True, mode="logits")
    ppl_loss = q.SeqPPL_Loss(time_average=True,
                             size_average=True,
                             mode="logits")

    optim = torch.optim.SGD(q.params_of(m), lr=lr)
    gradclip = q.ClipGradNorm(gradnorm)

    trainer = q.trainer(m).on(train_batches).loss(loss).optimizer(
        optim).device(device).hook(m).hook(gradclip)
    tester = q.tester(m).on(valid_batches).loss(
        loss, ppl_loss).device(device).hook(m)

    tt.tock("created model")
    tt.tick("training")
    q.train(trainer, tester).run(epochs=epochs)
    tt.tock("trained")
def run(lr=0.001):
    # data
    x = torch.randn(1000, 5, 5)

    real_data = q.dataset(x)
    gen_data_d = q.gan.gauss_dataset(10, len(real_data))
    disc_data = q.datacat([real_data, gen_data_d], 1)

    gen_data = q.gan.gauss_dataset(10)

    disc_data = q.dataload(disc_data, batch_size=20, shuffle=True)
    gen_data = q.dataload(gen_data, batch_size=20, shuffle=True)

    next(iter(disc_data))

    # models
    class Generator(torch.nn.Module):
        def __init__(self):
            super(Generator, self).__init__()
            self.lin1 = torch.nn.Linear(10, 20)
            self.lin2 = torch.nn.Linear(20, 25)

        def forward(self, z):
            ret = self.lin1(z)
            ret = torch.nn.functional.sigmoid(ret)
            ret = self.lin2(ret)
            ret = torch.nn.functional.sigmoid(ret)
            ret = ret.view(z.size(0), 5, 5)
            return ret

    class Discriminator(torch.nn.Module):
        def __init__(self):
            super(Discriminator, self).__init__()
            self.lin1 = torch.nn.Linear(25, 20)
            self.lin2 = torch.nn.Linear(20, 10)
            self.lin3 = torch.nn.Linear(10, 1)

        def forward(self, x):
            x = x.view(x.size(0), -1)
            ret = self.lin1(x)
            ret = torch.nn.functional.sigmoid(ret)
            ret = self.lin2(ret)
            ret = torch.nn.functional.sigmoid(ret)
            ret = self.lin3(ret)
            ret = torch.nn.functional.sigmoid(ret)
            ret = ret.squeeze(1)
            return ret

    discriminator = Discriminator()
    generator = Generator()

    disc_model = q.gan.GAN(discriminator,
                           generator,
                           gan_mode=q.gan.GAN.DISC_TRAIN)
    gen_model = q.gan.GAN(discriminator,
                          generator,
                          gan_mode=q.gan.GAN.GEN_TRAIN)

    disc_optim = torch.optim.Adam(q.params_of(discriminator), lr=lr)
    gen_optim = torch.optim.Adam(q.params_of(generator), lr=lr)

    disc_trainer = q.trainer(disc_model).on(disc_data).optimizer(
        disc_optim).loss(q.no_losses(1))
    gen_trainer = q.trainer(gen_model).on(gen_data).optimizer(gen_optim).loss(
        q.no_losses(1))

    gan_trainer = q.gan.GANTrainer(disc_trainer, gen_trainer)

    gan_trainer.run(50, disciters=10, geniters=3)
def run_classify(lr=0.001,
                 seqlen=6,
                 numex=500,
                 epochs=25,
                 batsize=10,
                 test=True,
                 cuda=False,
                 gpu=0):
    device = torch.device("cpu")
    if cuda:
        device = torch.device("cuda", gpu)
    # region construct data
    colors = "red blue green magenta cyan orange yellow grey salmon pink purple teal".split(
    )
    D = dict(zip(colors, range(len(colors))))
    inpseqs = []
    targets = []
    for i in range(numex):
        inpseq = list(np.random.choice(colors, seqlen, replace=False))
        target = np.random.choice(range(len(inpseq)), 1)[0]
        target_class = D[inpseq[target]]
        inpseq[target] = "${}$".format(inpseq[target])
        inpseqs.append("".join(inpseq))
        targets.append(target_class)

    sm = q.StringMatrix()
    sm.tokenize = lambda x: list(x)

    for inpseq in inpseqs:
        sm.add(inpseq)

    sm.finalize()
    print(sm[0])
    print(sm.D)
    targets = np.asarray(targets)

    data = q.dataload(sm.matrix[:-100], targets[:-100], batch_size=batsize)
    valid_data = q.dataload(sm.matrix[-100:],
                            targets[-100:],
                            batch_size=batsize)
    # endregion

    # region model
    embdim = 20
    enc2inpdim = 45
    encdim = 20
    outdim = 20
    emb = q.WordEmb(embdim, worddic=sm.D)  # sm dictionary (characters)
    out = q.WordLinout(outdim, worddic=D)  # target dictionary
    # encoders:
    enc1 = q.RNNEncoder(embdim, encdim, bidir=True)
    enc2 = q.RNNCellEncoder(enc2inpdim, outdim // 2, bidir=True)

    # model
    class Model(torch.nn.Module):
        def __init__(self, dim, _emb, _out, _enc1, _enc2, **kw):
            super(Model, self).__init__(**kw)
            self.dim, self.emb, self.out, self.enc1, self.enc2 = dim, _emb, _out, _enc1, _enc2
            self.score = torch.nn.Sequential(
                torch.nn.Linear(dim, 1, bias=False), torch.nn.Sigmoid())
            self.emb_expander = ExpandVecs(embdim, enc2inpdim, 2)
            self.enc_expander = ExpandVecs(encdim * 2, enc2inpdim, 2)

        def forward(self, x, with_att=False):
            # embed and encode
            xemb, xmask = self.emb(x)
            xenc = self.enc1(xemb, mask=xmask)
            # compute attention
            xatt = self.score(xenc).squeeze(
                2) * xmask.float()[:, :xenc.size(1)]
            # encode again
            _xemb = self.emb_expander(xemb[:, :xenc.size(1)])
            _xenc = self.enc_expander(xenc)
            _, xenc2 = self.enc2(_xemb,
                                 gate=xatt,
                                 mask=xmask[:, :xenc.size(1)],
                                 ret_states=True)
            scores = self.out(xenc2.view(xenc.size(0), -1))
            if with_att:
                return scores, xatt
            else:
                return scores

    model = Model(40, emb, out, enc1, enc2)
    # endregion

    # region test
    if test:
        inps = torch.tensor(sm.matrix[0:2])
        outs = model(inps)
    # endregion

    # region train
    optimizer = torch.optim.Adam(q.params_of(model), lr=lr)
    trainer = q.trainer(model).on(data).loss(torch.nn.CrossEntropyLoss(), q.Accuracy())\
        .optimizer(optimizer).hook(q.ClipGradNorm(5.)).device(device)
    validator = q.tester(model).on(valid_data).loss(
        q.Accuracy()).device(device)
    q.train(trainer, validator).run(epochs=epochs)
    # endregion

    # region check attention    #TODO
    # feed a batch
    inpd = torch.tensor(sm.matrix[400:410])
    outd, att = model(inpd, with_att=True)
    outd = torch.max(outd, 1)[1].cpu().detach().numpy()
    inpd = inpd.cpu().detach().numpy()
    att = att.cpu().detach().numpy()
    rD = {v: k for k, v in sm.D.items()}
    roD = {v: k for k, v in D.items()}
    for i in range(len(att)):
        inpdi = "   ".join([rD[x] for x in inpd[i]])
        outdi = roD[outd[i]]
        print("input:     {}\nattention: {}\nprediction: {}".format(
            inpdi, " ".join(["{:.1f}".format(x) for x in att[i]]), outdi))
Example #7
0
def run_words(lr=0.001,
              seqlen=8,
              batsize=50,
              epochs=1000,
              embdim=64,
              innerdim=128,
              z_dim=64,
              usebase=True,
              noaccumulate=False,
              ):
    # get some words
    N = 1000
    glove = q.PretrainedWordEmb(50, vocabsize=N+2)
    words = list(glove.D.keys())[2:]
    datasm = q.StringMatrix()
    datasm.tokenize = lambda x: list(x)
    for word in words:
        datasm.add(word)
    datasm.finalize()
    datamat = datasm.matrix[:, :seqlen]
    # replace <mask> with <end>
    datamat = datamat + (datamat == datasm.D["<MASK>"]) * (datasm.D["<END>"] - datasm.D["<MASK>"])


    real_data = q.dataset(datamat)
    gen_data_d = q.gan.gauss_dataset(z_dim, len(real_data))
    disc_data = q.datacat([real_data, gen_data_d], 1)

    gen_data = q.gan.gauss_dataset(z_dim)

    disc_data = q.dataload(disc_data, batch_size=batsize, shuffle=True)
    gen_data = q.dataload(gen_data, batch_size=batsize, shuffle=True)

    discriminator = Discriminator(datasm.D, embdim, innerdim)
    generator = Decoder(datasm.D, embdim, z_dim, "<START>", innerdim, maxtime=seqlen)

    SeqGAN = SeqGAN_Base if usebase else SeqGAN_DCL

    disc_model = SeqGAN(discriminator, generator, gan_mode=q.gan.GAN.DISC_TRAIN, accumulate=not noaccumulate)
    gen_model = SeqGAN(discriminator, generator, gan_mode=q.gan.GAN.GEN_TRAIN, accumulate=not noaccumulate)

    disc_optim = torch.optim.Adam(q.params_of(discriminator), lr=lr)
    gen_optim = torch.optim.Adam(q.params_of(generator), lr=lr)

    disc_trainer = q.trainer(disc_model).on(disc_data).optimizer(disc_optim).loss(q.no_losses(2))
    gen_trainer = q.trainer(gen_model).on(gen_data).optimizer(gen_optim).loss(q.no_losses(2))

    gan_trainer = q.gan.GANTrainer(disc_trainer, gen_trainer)

    gan_trainer.run(epochs, disciters=5, geniters=1, burnin=500)

    # print some predictions:
    with torch.no_grad():
        rvocab = {v: k for k, v in datasm.D.items()}
        q.batch_reset(generator)
        eval_z = torch.randn(50, z_dim)
        eval_y, _ = generator(eval_z)
        for i in range(len(eval_y)):
            prow = "".join([rvocab[mij] for mij in eval_y[i].numpy()])
            print(prow)

    print("done")
Example #8
0
def run(
    lr=0.0001,
    batsize=64,
    epochs=100000,
    lamda=10,
    disciters=5,
    burnin=-1,
    validinter=1000,
    devinter=100,
    cuda=False,
    gpu=0,
    z_dim=128,
    test=False,
    dim_d=128,
    dim_g=128,
):

    settings = locals().copy()
    logger = q.log.Logger(prefix="wgan_resnet_cifar")
    logger.save_settings(**settings)
    print("started")

    burnin = disciters if burnin == -1 else burnin

    if test:
        validinter = 10
        burnin = 1
        batsize = 2
        devinter = 1

    tt = q.ticktock("script")

    device = torch.device("cpu") if not cuda else torch.device("cuda", gpu)

    tt.tick("creating networks")
    gen = OldGenerator(z_dim, dim_g).to(device)
    crit = OldDiscriminator(dim_d).to(device)
    tt.tock("created networks")

    # test
    # z = torch.randn(3, z_dim).to(device)
    # x = gen(z)
    # s = crit(x)

    # data
    # load cifar
    tt.tick("loading data")
    traincifar, testcifar = load_cifar_dataset(train=True), load_cifar_dataset(
        train=False)
    print(len(traincifar))

    gen_data_d = q.gan.gauss_dataset(z_dim, len(traincifar))
    disc_data = q.datacat([traincifar, gen_data_d], 1)

    gen_data = q.gan.gauss_dataset(z_dim)
    gen_data_valid = q.gan.gauss_dataset(z_dim, 50000)

    disc_data = q.dataload(disc_data, batch_size=batsize, shuffle=True)
    gen_data = q.dataload(gen_data, batch_size=batsize, shuffle=True)
    gen_data_valid = q.dataload(gen_data_valid,
                                batch_size=batsize,
                                shuffle=False)
    validcifar_loader = q.dataload(testcifar,
                                   batch_size=batsize,
                                   shuffle=False)

    dev_data_gauss = q.gan.gauss_dataset(z_dim, len(testcifar))
    dev_disc_data = q.datacat([testcifar, dev_data_gauss], 1)
    dev_disc_data = q.dataload(dev_disc_data,
                               batch_size=batsize,
                               shuffle=False)
    # q.embed()
    tt.tock("loaded data")

    disc_model = q.gan.WGAN(crit, gen, lamda=lamda).disc_train()
    gen_model = q.gan.WGAN(crit, gen, lamda=lamda).gen_train()

    disc_optim = torch.optim.Adam(q.params_of(crit), lr=lr, betas=(0.5, 0.9))
    gen_optim = torch.optim.Adam(q.params_of(gen), lr=lr, betas=(0.5, 0.9))

    disc_bt = UnquantizeTransform()

    disc_trainer = q.trainer(disc_model).on(disc_data).optimizer(disc_optim).loss(3).device(device)\
        .set_batch_transformer(lambda a, b: (disc_bt(a), b))
    gen_trainer = q.trainer(gen_model).on(gen_data).optimizer(gen_optim).loss(
        1).device(device)

    fidandis = q.gan.FIDandIS(device=device)
    if not test:
        fidandis.set_real_stats_with(validcifar_loader)
    saver = q.gan.GenDataSaver(logger, "saved.npz")
    generator_validator = q.gan.GeneratorValidator(gen, [fidandis, saver],
                                                   gen_data_valid,
                                                   device=device,
                                                   logger=logger,
                                                   validinter=validinter)

    train_validator = q.tester(disc_model).on(dev_disc_data).loss(3).device(device)\
        .set_batch_transformer(lambda a, b: (disc_bt(a), b))

    train_validator.validinter = devinter

    tt.tick("training")
    gan_trainer = q.gan.GANTrainer(disc_trainer,
                                   gen_trainer,
                                   validators=(generator_validator,
                                               train_validator),
                                   lr_decay=True)

    gan_trainer.run(epochs, disciters=disciters, geniters=1, burnin=burnin)
    tt.tock("trained")
Example #9
0
def run(lr=OPT_LR,
        batsize=100,
        epochs=1000,
        validinter=20,
        wreg=0.00000000001,
        dropout=0.1,
        embdim=50,
        encdim=50,
        numlayers=1,
        cuda=False,
        gpu=0,
        mode="flat",
        test=False,
        gendata=False):
    if gendata:
        loadret = load_jsons()
        pickle.dump(loadret,
                    open("loadcache.flat.pkl", "w"),
                    protocol=pickle.HIGHEST_PROTOCOL)
    else:
        settings = locals().copy()
        logger = q.Logger(prefix="rank_lstm")
        logger.save_settings(**settings)

        device = torch.device("cpu")
        if cuda:
            device = torch.device("cuda", gpu)

        tt = q.ticktock("script")

        # region DATA
        tt.tick("loading data")
        qsm, csm, goldchainids, badchainids = pickle.load(
            open("loadcache.{}.pkl".format(mode)))
        eids = np.arange(0, len(goldchainids))

        data = [qsm.matrix, eids]
        traindata, validdata = q.datasplit(data, splits=(7, 3), random=False)
        validdata, testdata = q.datasplit(validdata,
                                          splits=(1, 2),
                                          random=False)

        trainloader = q.dataload(*traindata, batch_size=batsize, shuffle=True)

        input_feeder = FlatInpFeeder(csm.matrix, goldchainids, badchainids)

        def inp_bt(_qsm_batch, _eids_batch):
            golds_batch, bads_batch = input_feeder(_eids_batch)
            return _qsm_batch, golds_batch, bads_batch

        if test:
            # test input feeder
            eids = q.var(torch.arange(0, 10).long()).v
            _test_golds_batch, _test_bads_batch = input_feeder(eids)
        tt.tock("data loaded")
        # endregion

        # region MODEL
        dims = [encdim // 2] * numlayers

        question_encoder = FlatEncoder(embdim, dims, qsm.D, bidir=True)
        query_encoder = FlatEncoder(embdim, dims, csm.D, bidir=True)
        similarity = DotDistance()

        rankmodel = RankModel(question_encoder, query_encoder, similarity)
        scoremodel = ScoreModel(question_encoder, query_encoder, similarity)
        # endregion

        # region VALIDATION
        rankcomp = RankingComputer(scoremodel, validdata[1], validdata[0],
                                   csm.matrix, goldchainids, badchainids)
        # endregion

        # region TRAINING
        optim = torch.optim.Adam(q.params_of(rankmodel),
                                 lr=lr,
                                 weight_decay=wreg)
        trainer = q.trainer(rankmodel).on(trainloader).loss(1)\
                   .set_batch_transformer(inp_bt).optimizer(optim).device(device)

        def validation_function():
            rankmetrics = rankcomp.compute(RecallAt(1, totaltrue=1),
                                           RecallAt(5, totaltrue=1), MRR())
            ret = []
            for rankmetric in rankmetrics:
                rankmetric = np.asarray(rankmetric)
                ret_i = rankmetric.mean()
                ret.append(ret_i)
            return "valid: " + " - ".join(["{:.4f}".format(x) for x in ret])

        q.train(trainer, validation_function).run(epochs,
                                                  validinter=validinter)
def run(lr=0.0001,
        batsize=64,
        epochs=100000,
        lamda=10,
        disciters=5,
        burnin=-1,
        validinter=1000,
        devinter=100,
        cuda=False,
        gpu=0,
        z_dim=128,
        test=False,
        dim_d=128,
        dim_g=128,
        vggversion=13,
        vgglayer=9,
        vggvanilla=False,           # if True, makes trainable feature transform
        extralayers=False,          # adds a couple extra res blocks to generator to match added VGG
        pixelpenalty=False,         # if True, uses penalty based on pixel-wise interpolate
        inceptionpath="/data/lukovnik/",
        normalwgan=False,
        ):
        # vggvanilla=True and pixelpenalty=True makes a normal WGAN

    settings = locals().copy()
    logger = q.log.Logger(prefix="wgan_resnet_cifar_feat")
    logger.save_settings(**settings)

    burnin = disciters if burnin == -1 else burnin

    if test:
        validinter=10
        burnin=1
        batsize=2
        devinter = 1

    tt = q.ticktock("script")

    device = torch.device("cpu") if not cuda else torch.device("cuda", gpu)

    tt.tick("creating networks")
    if not normalwgan:
        print("doing wgan-feat")
        gen = OldGenerator(z_dim, dim_g, extra_layers=extralayers).to(device)
        inpd = get_vgg_outdim(vggversion, vgglayer)
        crit = ReducedDiscriminator(inpd, dim_d).to(device)
        subvgg = SubVGG(vggversion, vgglayer, pretrained=not vggvanilla)
    else:
        print("doing normal wgan")
        gen = OldGenerator(z_dim, dim_g, extra_layers=False).to(device)
        crit = OldDiscriminator(dim_d).to(device)
        subvgg = None
    tt.tock("created networks")

    # test
    # z = torch.randn(3, z_dim).to(device)
    # x = gen(z)
    # s = crit(x)

    # data
    # load cifar
    tt.tick("loading data")
    traincifar, testcifar = load_cifar_dataset(train=True), load_cifar_dataset(train=False)
    print(len(traincifar), len(testcifar))

    gen_data_d = q.gan.gauss_dataset(z_dim, len(traincifar))
    disc_data = q.datacat([traincifar, gen_data_d], 1)

    gen_data = q.gan.gauss_dataset(z_dim)
    gen_data_valid = q.gan.gauss_dataset(z_dim, 50000)

    swd_gen_data = q.gan.gauss_dataset(z_dim, 10000)
    swd_real_data = []
    swd_shape = traincifar[0].size()
    for i in range(10000):
        swd_real_data.append(testcifar[i])
    swd_real_data = torch.stack(swd_real_data, 0)

    disc_data = q.dataload(disc_data, batch_size=batsize, shuffle=True)
    gen_data = q.dataload(gen_data, batch_size=batsize, shuffle=True)
    gen_data_valid = q.dataload(gen_data_valid, batch_size=batsize, shuffle=False)
    validcifar_loader = q.dataload(testcifar, batch_size=batsize, shuffle=False)

    swd_batsize = 64
    swd_gen_data = q.dataload(swd_gen_data, batch_size=swd_batsize, shuffle=False)
    swd_real_data = q.dataload(swd_real_data, batch_size=swd_batsize, shuffle=False)

    dev_data_gauss = q.gan.gauss_dataset(z_dim, len(testcifar))
    dev_disc_data = q.datacat([testcifar, dev_data_gauss], 1)
    dev_disc_data = q.dataload(dev_disc_data, batch_size=batsize, shuffle=False)
    # q.embed()
    tt.tock("loaded data")

    if not normalwgan:
        disc_model = q.gan.WGAN_F(crit, gen, subvgg, lamda=lamda, pixel_penalty=pixelpenalty).disc_train()
        gen_model = q.gan.WGAN_F(crit, gen, subvgg, lamda=lamda, pixel_penalty=pixelpenalty).gen_train()
    else:
        disc_model = q.gan.WGAN(crit, gen, lamda=lamda).disc_train()
        gen_model = q.gan.WGAN(crit, gen, lamda=lamda).gen_train()

    disc_params = q.params_of(crit)
    if vggvanilla and not normalwgan:
        disc_params += q.params_of(subvgg)
    disc_optim = torch.optim.Adam(disc_params, lr=lr, betas=(0.5, 0.9))
    gen_optim = torch.optim.Adam(q.params_of(gen), lr=lr, betas=(0.5, 0.9))

    disc_bt = UnquantizeTransform()

    disc_trainer = q.trainer(disc_model).on(disc_data).optimizer(disc_optim).loss(3).device(device)\
        .set_batch_transformer(lambda a, b: (disc_bt(a), b))
    gen_trainer = q.trainer(gen_model).on(gen_data).optimizer(gen_optim).loss(1).device(device)

    # fidandis = q.gan.FIDandIS(device=device)
    tfis = q.gan.tfIS(inception_path=inceptionpath, gpu=gpu)
    # if not test:
    #     fidandis.set_real_stats_with(validcifar_loader)
    saver = q.gan.GenDataSaver(logger, "saved.npz")
    generator_validator = q.gan.GeneratorValidator(gen, [tfis, saver], gen_data_valid, device=device,
                                         logger=logger, validinter=validinter)

    train_validator = q.tester(disc_model).on(dev_disc_data).loss(3).device(device)\
        .set_batch_transformer(lambda a, b: (disc_bt(a), b))

    train_validator.validinter = devinter

    tt.tick("initializing SWD")
    swd = q.gan.SlicedWassersteinDistance(swd_shape)
    swd.prepare_reals(swd_real_data)
    tt.tock("SWD initialized")

    swd_validator = q.gan.GeneratorValidator(gen, [swd], swd_gen_data, device=device,
                                             logger=logger, validinter=validinter, name="swd")

    tt.tick("training")
    gan_trainer = q.gan.GANTrainer(disc_trainer, gen_trainer,
                                   validators=(generator_validator, train_validator, swd_validator),
                                   lr_decay=True)

    gan_trainer.run(epochs, disciters=disciters, geniters=1, burnin=burnin)
    tt.tock("trained")
Example #11
0
def run_normal_seqvae_toy(
    lr=0.001,
    embdim=64,
    encdim=100,
    zdim=64,
    batsize=50,
    epochs=100,
):

    # test
    vocsize = 100
    seqlen = 12
    wD = dict((chr(xi), xi) for xi in range(vocsize))

    # region encoder
    encoder_emb = q.WordEmb(embdim, worddic=wD)
    encoder_lstm = q.FastestLSTMEncoder(embdim, encdim)

    class EncoderNet(torch.nn.Module):
        def __init__(self, emb, core):
            super(EncoderNet, self).__init__()
            self.emb, self.core = emb, core

        def forward(self, x):
            embs, mask = self.emb(x)
            out, states = self.core(embs, mask, ret_states=True)
            top_state = states[-1][0][:, 0]
            # top_state = top_state.unsqueeze(1).repeat(1, out.size(1), 1)
            return top_state  # (batsize, encdim)

    encoder_net = EncoderNet(encoder_emb, encoder_lstm)
    encoder = Posterior(encoder_net, encdim, zdim)
    # endregion

    # region decoder
    decoder_emb = q.WordEmb(embdim, worddic=wD)
    decoder_lstm = q.LSTMCell(embdim + zdim, encdim)
    decoder_outlin = q.WordLinout(encdim, worddic=wD)

    class DecoderCell(torch.nn.Module):
        def __init__(self, emb, core, out, **kw):
            super(DecoderCell, self).__init__()
            self.emb, self.core, self.out = emb, core, out

        def forward(self, xs, z=None):
            embs, mask = self.emb(xs)
            core_inp = torch.cat([embs, z], 1)
            core_out = self.core(core_inp)
            out = self.out(core_out)
            return out

    decoder_cell = DecoderCell(decoder_emb, decoder_lstm, decoder_outlin)
    decoder = q.TFDecoder(decoder_cell)
    # endregion

    likelihood = Likelihood()

    vae = SeqVAE(encoder, decoder, likelihood)

    x = torch.randint(0, vocsize, (batsize, seqlen), dtype=torch.int64)
    ys = vae(x)

    optim = torch.optim.Adam(q.params_of(vae), lr=lr)

    x = torch.randint(0, vocsize, (batsize * 100, seqlen), dtype=torch.int64)
    dataloader = q.dataload(x, batch_size=batsize, shuffle=True)

    trainer = q.trainer(vae).on(dataloader).optimizer(optim).loss(4).epochs(
        epochs)
    trainer.run()

    print("done \n\n")