def simple_est_rb(data, interleaved=False, p_min=0.0, p_max=1.0, n_particles=8000, return_all=False): r""" Estimates the fidelity of a gateset from a standard or interleaved randomized benchmarking experiment. :param data: Data to be used in estimating the gateset fidelity. :type data: see :ref:`simple_est_data_arg` :param float p_min: Minimum value of the parameter :math:`p` to consider feasible. :param float p_max: Minimum value of the parameter :math:`p` to consider feasible. :param int n_particles: The number of particles to be used in estimating the randomized benchmarking model. :param bool return_all: Controls whether additional return values are provided, such as the updater. :column counts (int): How many sequences of length :math:`m` were observed to survive. :column m (int): How many gates were used for sequences in this row of the data. :column n_shots (int): How many different sequences of length :math:`m` were measured. :column reference (bool): `True` if this row represents reference sequences, or `False` if the gate of interest is interleaved. Note that this column is omitted if ``interleaved`` is `False`. :return mean: Bayesian mean estimator for the model vector :math:`(p, A, B)`, or :math:`(\tilde{p}, p_{\text{ref}}, A, B)` for the interleaved case. :return var: Variance of the final posterior over RB model vectors. :return extra: See :ref:`simple_est_extra_return`. Only returned if ``return_all`` is `True`. """ model = BinomialModel(RandomizedBenchmarkingModel(interleaved=interleaved)) prior = PostselectedDistribution( UniformDistribution( [[p_min, p_max], [0, 1], [0, 1]] if not interleaved else [[p_min, p_max], [p_min, p_max], [0, 1], [0, 1]]), model) data = load_data_or_txt(data, [('counts', 'uint'), ('m', 'uint'), ('n_shots', 'uint')] + ([('reference', 'uint')] if interleaved else [])) cols_expparams = {'m': (1, 'm'), 'n_meas': (2, 'n_shots')} if interleaved: cols_expparams['reference'] = (3, 'reference') outcomes, expparams = data_to_params(data, model.expparams_dtype, cols_expparams=cols_expparams) return do_update(model, n_particles, prior, outcomes, expparams, return_all)
def simple_est_prec(data, freq_min=0.0, freq_max=1.0, n_particles=6000, return_all=False): """ Estimates a simple precession (cosĀ²) from experimental data. Note that this model is mainly for testing purposes, as it does not consider the phase or amplitude of precession, leaving only the frequency. :param data: Data to be used in estimating the precession frequency. :type data: see :ref:`simple_est_data_arg` :param float freq_min: The minimum feasible frequency to consider. :param float freq_max: The maximum feasible frequency to consider. :param int n_particles: The number of particles to be used in estimating the precession frequency. :param bool return_all: Controls whether additional return values are provided, such as the updater. :column counts (int): How many counts were observed at the sampled time. :column t (float): The evolutions time at which the samples were collected. :column n_shots (int): How many samples were collected at the given evolution time. :return mean: Bayesian mean estimator for the precession frequency. :return var: Variance of the final posterior over frequency. :return extra: See :ref:`simple_est_extra_return`. Only returned if ``return_all`` is `True`. """ model = BinomialModel(SimplePrecessionModel(freq_min)) prior = UniformDistribution([0, freq_max]) data = load_data_or_txt(data, [ ('counts', 'uint'), ('t', float), ('n_shots', 'uint') ]) outcomes, expparams = data_to_params(data, model.expparams_dtype, cols_expparams={ 'x': (1, 't'), 'n_meas': (2, 'n_shots') } ) return do_update( model, n_particles, prior, outcomes, expparams, return_all )
def run_estimate(data, freq, n_particles=10000, return_all=False): """this is a copy of qinfer.simple_ Args: data: n_particles: return_all: Returns: """ model = BinomialModel(AmplitudeEstimator(freq)) # prior = PostselectedDistribution( # UniformDistribution( # [ # [0.30, 0.5], # [0.30, 0.5] # ]), # model, # maxiters=10000 # ) prior = MyDistribution() data = load_data_or_txt(data, [ ('counts', 'uint'), ('t', float), ('n_shots', 'uint') ]) outcomes, expparams = data_to_params(data, model.expparams_dtype, cols_expparams={ 't': (1, 't'), 'n_meas': (2, 'n_shots') } ) return do_update( model, n_particles, prior, outcomes, expparams, return_all )