Example #1
0
 def test_qgan_training_cg(self):
     """Test QGAN training."""
     optimizer = CG(maxiter=1)
     self.qgan.set_generator(generator_circuit=self.generator_circuit,
                             generator_optimizer=optimizer)
     trained_statevector = self.qgan.run(self.qi_statevector)
     trained_qasm = self.qgan.run(self.qi_qasm)
     self.assertAlmostEqual(trained_qasm['rel_entr'],
                            trained_statevector['rel_entr'],
                            delta=0.1)
    def test_vqe(self):
        """Test VQE with gradients"""

        method = "lin_comb"
        backend = "qasm_simulator"
        q_instance = QuantumInstance(BasicAer.get_backend(backend),
                                     seed_simulator=79,
                                     seed_transpiler=2)
        # Define the Hamiltonian
        h2_hamiltonian = (-1.05 * (I ^ I) + 0.39 * (I ^ Z) - 0.39 * (Z ^ I) -
                          0.01 * (Z ^ Z) + 0.18 * (X ^ X))
        h2_energy = -1.85727503

        # Define the Ansatz
        wavefunction = QuantumCircuit(2)
        params = ParameterVector("theta", length=8)
        itr = iter(params)
        wavefunction.ry(next(itr), 0)
        wavefunction.ry(next(itr), 1)
        wavefunction.rz(next(itr), 0)
        wavefunction.rz(next(itr), 1)
        wavefunction.cx(0, 1)
        wavefunction.ry(next(itr), 0)
        wavefunction.ry(next(itr), 1)
        wavefunction.rz(next(itr), 0)
        wavefunction.rz(next(itr), 1)

        # Conjugate Gradient algorithm
        optimizer = CG(maxiter=10)

        grad = Gradient(grad_method=method)

        # Gradient callable
        vqe = VQE(ansatz=wavefunction,
                  optimizer=optimizer,
                  gradient=grad,
                  quantum_instance=q_instance)

        result = vqe.compute_minimum_eigenvalue(operator=h2_hamiltonian)
        np.testing.assert_almost_equal(result.optimal_value,
                                       h2_energy,
                                       decimal=0)
Example #3
0
    def test_vqe(self):
        """Test VQE with gradients"""

        method = 'lin_comb'
        backend = 'qasm_simulator'
        q_instance = QuantumInstance(BasicAer.get_backend(backend),
                                     seed_simulator=79,
                                     seed_transpiler=2)
        # Define the Hamiltonian
        h2_hamiltonian = -1.05 * (I ^ I) + 0.39 * (I ^ Z) - 0.39 * (Z ^ I) \
                         - 0.01 * (Z ^ Z) + 0.18 * (X ^ X)
        h2_energy = -1.85727503

        # Define the Ansatz
        wavefunction = QuantumCircuit(2)
        params = ParameterVector('theta', length=8)
        itr = iter(params)
        wavefunction.ry(next(itr), 0)
        wavefunction.ry(next(itr), 1)
        wavefunction.rz(next(itr), 0)
        wavefunction.rz(next(itr), 1)
        wavefunction.cx(0, 1)
        wavefunction.ry(next(itr), 0)
        wavefunction.ry(next(itr), 1)
        wavefunction.rz(next(itr), 0)
        wavefunction.rz(next(itr), 1)

        # Conjugate Gradient algorithm
        optimizer = CG(maxiter=10)

        grad = Gradient(grad_method=method)

        # Gradient callable
        vqe = VQE(h2_hamiltonian,
                  wavefunction,
                  optimizer=optimizer,
                  gradient=grad)

        result = vqe.run(q_instance)
        np.testing.assert_almost_equal(result['optimal_value'],
                                       h2_energy,
                                       decimal=0)
Example #4
0
class TestVQE(QiskitAlgorithmsTestCase):
    """Test VQE"""
    def setUp(self):
        super().setUp()
        self.seed = 50
        algorithm_globals.random_seed = self.seed
        self.h2_op = (-1.052373245772859 * (I ^ I) + 0.39793742484318045 *
                      (I ^ Z) - 0.39793742484318045 * (Z ^ I) -
                      0.01128010425623538 * (Z ^ Z) + 0.18093119978423156 *
                      (X ^ X))
        self.h2_energy = -1.85727503

        self.ryrz_wavefunction = TwoLocal(rotation_blocks=["ry", "rz"],
                                          entanglement_blocks="cz")
        self.ry_wavefunction = TwoLocal(rotation_blocks="ry",
                                        entanglement_blocks="cz")

        self.qasm_simulator = QuantumInstance(
            BasicAer.get_backend("qasm_simulator"),
            shots=1024,
            seed_simulator=self.seed,
            seed_transpiler=self.seed,
        )
        self.statevector_simulator = QuantumInstance(
            BasicAer.get_backend("statevector_simulator"),
            shots=1,
            seed_simulator=self.seed,
            seed_transpiler=self.seed,
        )

    def test_basic_aer_statevector(self):
        """Test the VQE on BasicAer's statevector simulator."""
        wavefunction = self.ryrz_wavefunction
        vqe = VQE(
            ansatz=wavefunction,
            optimizer=L_BFGS_B(),
            quantum_instance=QuantumInstance(
                BasicAer.get_backend("statevector_simulator"),
                basis_gates=["u1", "u2", "u3", "cx", "id"],
                coupling_map=[[0, 1]],
                seed_simulator=algorithm_globals.random_seed,
                seed_transpiler=algorithm_globals.random_seed,
            ),
        )

        result = vqe.compute_minimum_eigenvalue(operator=self.h2_op)

        with self.subTest(msg="test eigenvalue"):
            self.assertAlmostEqual(result.eigenvalue.real, self.h2_energy)

        with self.subTest(msg="test dimension of optimal point"):
            self.assertEqual(len(result.optimal_point), 16)

        with self.subTest(msg="assert cost_function_evals is set"):
            self.assertIsNotNone(result.cost_function_evals)

        with self.subTest(msg="assert optimizer_time is set"):
            self.assertIsNotNone(result.optimizer_time)

    def test_circuit_input(self):
        """Test running the VQE on a plain QuantumCircuit object."""
        wavefunction = QuantumCircuit(2).compose(EfficientSU2(2))
        optimizer = SLSQP(maxiter=50)
        vqe = VQE(ansatz=wavefunction,
                  optimizer=optimizer,
                  quantum_instance=self.statevector_simulator)
        result = vqe.compute_minimum_eigenvalue(operator=self.h2_op)
        self.assertAlmostEqual(result.eigenvalue.real,
                               self.h2_energy,
                               places=5)

    @data(
        (MatrixExpectation(), 1),
        (AerPauliExpectation(), 1),
        (PauliExpectation(), 2),
    )
    @unpack
    def test_construct_circuit(self, expectation, num_circuits):
        """Test construct circuits returns QuantumCircuits and the right number of them."""
        try:
            wavefunction = EfficientSU2(2, reps=1)
            vqe = VQE(ansatz=wavefunction, expectation=expectation)
            params = [0] * wavefunction.num_parameters
            circuits = vqe.construct_circuit(parameter=params,
                                             operator=self.h2_op)

            self.assertEqual(len(circuits), num_circuits)
            for circuit in circuits:
                self.assertIsInstance(circuit, QuantumCircuit)
        except MissingOptionalLibraryError as ex:
            self.skipTest(str(ex))
            return

    def test_missing_varform_params(self):
        """Test specifying a variational form with no parameters raises an error."""
        circuit = QuantumCircuit(self.h2_op.num_qubits)
        vqe = VQE(
            ansatz=circuit,
            quantum_instance=BasicAer.get_backend("statevector_simulator"))
        with self.assertRaises(RuntimeError):
            vqe.compute_minimum_eigenvalue(operator=self.h2_op)

    @data(
        (SLSQP(maxiter=50), 5, 4),
        (SPSA(maxiter=150), 2, 2),  # max_evals_grouped=n or =2 if n>2
    )
    @unpack
    def test_max_evals_grouped(self, optimizer, places, max_evals_grouped):
        """VQE Optimizers test"""
        vqe = VQE(
            ansatz=self.ryrz_wavefunction,
            optimizer=optimizer,
            max_evals_grouped=max_evals_grouped,
            quantum_instance=self.statevector_simulator,
        )
        result = vqe.compute_minimum_eigenvalue(operator=self.h2_op)
        self.assertAlmostEqual(result.eigenvalue.real,
                               self.h2_energy,
                               places=places)

    def test_basic_aer_qasm(self):
        """Test the VQE on BasicAer's QASM simulator."""
        optimizer = SPSA(maxiter=300, last_avg=5)
        wavefunction = self.ry_wavefunction

        vqe = VQE(
            ansatz=wavefunction,
            optimizer=optimizer,
            max_evals_grouped=1,
            quantum_instance=self.qasm_simulator,
        )

        # TODO benchmark this later.
        result = vqe.compute_minimum_eigenvalue(operator=self.h2_op)
        self.assertAlmostEqual(result.eigenvalue.real, -1.86823, places=2)

    def test_qasm_eigenvector_normalized(self):
        """Test VQE with qasm_simulator returns normalized eigenvector."""
        wavefunction = self.ry_wavefunction
        vqe = VQE(ansatz=wavefunction, quantum_instance=self.qasm_simulator)
        result = vqe.compute_minimum_eigenvalue(operator=self.h2_op)

        amplitudes = list(result.eigenstate.values())
        self.assertAlmostEqual(np.linalg.norm(amplitudes), 1.0, places=4)

    @unittest.skipUnless(has_aer(),
                         "qiskit-aer doesn't appear to be installed.")
    def test_with_aer_statevector(self):
        """Test VQE with Aer's statevector_simulator."""
        backend = Aer.get_backend("aer_simulator_statevector")
        wavefunction = self.ry_wavefunction
        optimizer = L_BFGS_B()

        quantum_instance = QuantumInstance(
            backend,
            seed_simulator=algorithm_globals.random_seed,
            seed_transpiler=algorithm_globals.random_seed,
        )
        vqe = VQE(
            ansatz=wavefunction,
            optimizer=optimizer,
            max_evals_grouped=1,
            quantum_instance=quantum_instance,
        )

        result = vqe.compute_minimum_eigenvalue(operator=self.h2_op)
        self.assertAlmostEqual(result.eigenvalue.real,
                               self.h2_energy,
                               places=6)

    @unittest.skipUnless(has_aer(),
                         "qiskit-aer doesn't appear to be installed.")
    def test_with_aer_qasm(self):
        """Test VQE with Aer's qasm_simulator."""
        backend = Aer.get_backend("aer_simulator")
        optimizer = SPSA(maxiter=200, last_avg=5)
        wavefunction = self.ry_wavefunction

        quantum_instance = QuantumInstance(
            backend,
            seed_simulator=algorithm_globals.random_seed,
            seed_transpiler=algorithm_globals.random_seed,
        )

        vqe = VQE(
            ansatz=wavefunction,
            optimizer=optimizer,
            expectation=PauliExpectation(),
            quantum_instance=quantum_instance,
        )

        result = vqe.compute_minimum_eigenvalue(operator=self.h2_op)

        self.assertAlmostEqual(result.eigenvalue.real, -1.86305, places=2)

    @unittest.skipUnless(has_aer(),
                         "qiskit-aer doesn't appear to be installed.")
    def test_with_aer_qasm_snapshot_mode(self):
        """Test the VQE using Aer's qasm_simulator snapshot mode."""

        backend = Aer.get_backend("aer_simulator")
        optimizer = L_BFGS_B()
        wavefunction = self.ry_wavefunction

        quantum_instance = QuantumInstance(
            backend,
            shots=1,
            seed_simulator=algorithm_globals.random_seed,
            seed_transpiler=algorithm_globals.random_seed,
        )
        vqe = VQE(
            ansatz=wavefunction,
            optimizer=optimizer,
            expectation=AerPauliExpectation(),
            quantum_instance=quantum_instance,
        )

        result = vqe.compute_minimum_eigenvalue(operator=self.h2_op)
        self.assertAlmostEqual(result.eigenvalue.real,
                               self.h2_energy,
                               places=6)

    @unittest.skipUnless(has_aer(),
                         "qiskit-aer doesn't appear to be installed.")
    @data(
        CG(maxiter=1),
        L_BFGS_B(maxfun=1),
        P_BFGS(maxfun=1, max_processes=0),
        SLSQP(maxiter=1),
        TNC(maxiter=1),
    )
    def test_with_gradient(self, optimizer):
        """Test VQE using Gradient()."""
        quantum_instance = QuantumInstance(
            backend=Aer.get_backend("qasm_simulator"),
            shots=1,
            seed_simulator=algorithm_globals.random_seed,
            seed_transpiler=algorithm_globals.random_seed,
        )
        vqe = VQE(
            ansatz=self.ry_wavefunction,
            optimizer=optimizer,
            gradient=Gradient(),
            expectation=AerPauliExpectation(),
            quantum_instance=quantum_instance,
            max_evals_grouped=1000,
        )
        vqe.compute_minimum_eigenvalue(operator=self.h2_op)

    def test_with_two_qubit_reduction(self):
        """Test the VQE using TwoQubitReduction."""
        qubit_op = PauliSumOp.from_list([
            ("IIII", -0.8105479805373266),
            ("IIIZ", 0.17218393261915552),
            ("IIZZ", -0.22575349222402472),
            ("IZZI", 0.1721839326191556),
            ("ZZII", -0.22575349222402466),
            ("IIZI", 0.1209126326177663),
            ("IZZZ", 0.16892753870087912),
            ("IXZX", -0.045232799946057854),
            ("ZXIX", 0.045232799946057854),
            ("IXIX", 0.045232799946057854),
            ("ZXZX", -0.045232799946057854),
            ("ZZIZ", 0.16614543256382414),
            ("IZIZ", 0.16614543256382414),
            ("ZZZZ", 0.17464343068300453),
            ("ZIZI", 0.1209126326177663),
        ])
        tapered_qubit_op = TwoQubitReduction(num_particles=2).convert(qubit_op)
        for simulator in [self.qasm_simulator, self.statevector_simulator]:
            with self.subTest(f"Test for {simulator}."):
                vqe = VQE(
                    self.ry_wavefunction,
                    SPSA(maxiter=300, last_avg=5),
                    quantum_instance=simulator,
                )
                result = vqe.compute_minimum_eigenvalue(tapered_qubit_op)
                energy = -1.868 if simulator == self.qasm_simulator else self.h2_energy
                self.assertAlmostEqual(result.eigenvalue.real,
                                       energy,
                                       places=2)

    def test_callback(self):
        """Test the callback on VQE."""
        history = {"eval_count": [], "parameters": [], "mean": [], "std": []}

        def store_intermediate_result(eval_count, parameters, mean, std):
            history["eval_count"].append(eval_count)
            history["parameters"].append(parameters)
            history["mean"].append(mean)
            history["std"].append(std)

        optimizer = COBYLA(maxiter=3)
        wavefunction = self.ry_wavefunction

        vqe = VQE(
            ansatz=wavefunction,
            optimizer=optimizer,
            callback=store_intermediate_result,
            quantum_instance=self.qasm_simulator,
        )
        vqe.compute_minimum_eigenvalue(operator=self.h2_op)

        self.assertTrue(
            all(isinstance(count, int) for count in history["eval_count"]))
        self.assertTrue(
            all(isinstance(mean, float) for mean in history["mean"]))
        self.assertTrue(all(isinstance(std, float) for std in history["std"]))
        for params in history["parameters"]:
            self.assertTrue(all(isinstance(param, float) for param in params))

    def test_reuse(self):
        """Test re-using a VQE algorithm instance."""
        vqe = VQE()
        with self.subTest(msg="assert running empty raises AlgorithmError"):
            with self.assertRaises(AlgorithmError):
                _ = vqe.compute_minimum_eigenvalue(operator=self.h2_op)

        ansatz = TwoLocal(rotation_blocks=["ry", "rz"],
                          entanglement_blocks="cz")
        vqe.ansatz = ansatz
        with self.subTest(msg="assert missing operator raises AlgorithmError"):
            with self.assertRaises(AlgorithmError):
                _ = vqe.compute_minimum_eigenvalue(operator=self.h2_op)

        vqe.expectation = MatrixExpectation()
        vqe.quantum_instance = self.statevector_simulator
        with self.subTest(msg="assert VQE works once all info is available"):
            result = vqe.compute_minimum_eigenvalue(operator=self.h2_op)
            self.assertAlmostEqual(result.eigenvalue.real,
                                   self.h2_energy,
                                   places=5)

        operator = PrimitiveOp(
            np.array([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, 2, 0], [0, 0, 0,
                                                                  3]]))

        with self.subTest(msg="assert minimum eigensolver interface works"):
            result = vqe.compute_minimum_eigenvalue(operator=operator)
            self.assertAlmostEqual(result.eigenvalue.real, -1.0, places=5)

    def test_vqe_optimizer(self):
        """Test running same VQE twice to re-use optimizer, then switch optimizer"""
        vqe = VQE(
            optimizer=SLSQP(),
            quantum_instance=QuantumInstance(
                BasicAer.get_backend("statevector_simulator")),
        )

        def run_check():
            result = vqe.compute_minimum_eigenvalue(operator=self.h2_op)
            self.assertAlmostEqual(result.eigenvalue.real,
                                   -1.85727503,
                                   places=5)

        run_check()

        with self.subTest("Optimizer re-use"):
            run_check()

        with self.subTest("Optimizer replace"):
            vqe.optimizer = L_BFGS_B()
            run_check()

    @data(MatrixExpectation(), None)
    def test_backend_change(self, user_expectation):
        """Test that VQE works when backend changes."""
        vqe = VQE(
            ansatz=TwoLocal(rotation_blocks=["ry", "rz"],
                            entanglement_blocks="cz"),
            optimizer=SLSQP(maxiter=2),
            expectation=user_expectation,
            quantum_instance=BasicAer.get_backend("statevector_simulator"),
        )
        result0 = vqe.compute_minimum_eigenvalue(operator=self.h2_op)
        if user_expectation is not None:
            with self.subTest("User expectation kept."):
                self.assertEqual(vqe.expectation, user_expectation)

        vqe.quantum_instance = BasicAer.get_backend("qasm_simulator")

        # works also if no expectation is set, since it will be determined automatically
        result1 = vqe.compute_minimum_eigenvalue(operator=self.h2_op)

        if user_expectation is not None:
            with self.subTest(
                    "Change backend with user expectation, it is kept."):
                self.assertEqual(vqe.expectation, user_expectation)

        with self.subTest("Check results."):
            self.assertEqual(len(result0.optimal_point),
                             len(result1.optimal_point))

    def test_batch_evaluate_with_qnspsa(self):
        """Test batch evaluating with QNSPSA works."""
        ansatz = TwoLocal(2,
                          rotation_blocks=["ry", "rz"],
                          entanglement_blocks="cz")

        wrapped_backend = BasicAer.get_backend("qasm_simulator")
        inner_backend = BasicAer.get_backend("statevector_simulator")

        callcount = {"count": 0}

        def wrapped_run(circuits, **kwargs):
            kwargs["callcount"]["count"] += 1
            return inner_backend.run(circuits)

        wrapped_backend.run = partial(wrapped_run, callcount=callcount)

        fidelity = QNSPSA.get_fidelity(ansatz, backend=wrapped_backend)
        qnspsa = QNSPSA(fidelity, maxiter=5)

        vqe = VQE(
            ansatz=ansatz,
            optimizer=qnspsa,
            max_evals_grouped=100,
            quantum_instance=wrapped_backend,
        )
        _ = vqe.compute_minimum_eigenvalue(Z ^ Z)

        # 1 calibration + 1 stddev estimation + 1 initial blocking
        # + 5 (1 loss + 1 fidelity + 1 blocking) + 1 return loss + 1 VQE eval
        expected = 1 + 1 + 1 + 5 * 3 + 1 + 1

        self.assertEqual(callcount["count"], expected)

    def test_set_ansatz_to_none(self):
        """Tests that setting the ansatz to None results in the default behavior"""
        vqe = VQE(
            ansatz=self.ryrz_wavefunction,
            optimizer=L_BFGS_B(),
            quantum_instance=self.statevector_simulator,
        )
        vqe.ansatz = None
        self.assertIsInstance(vqe.ansatz, RealAmplitudes)

    def test_set_optimizer_to_none(self):
        """Tests that setting the optimizer to None results in the default behavior"""
        vqe = VQE(
            ansatz=self.ryrz_wavefunction,
            optimizer=L_BFGS_B(),
            quantum_instance=self.statevector_simulator,
        )
        vqe.optimizer = None
        self.assertIsInstance(vqe.optimizer, SLSQP)

    def test_optimizer_scipy_callable(self):
        """Test passing a SciPy optimizer directly as callable."""
        vqe = VQE(
            optimizer=partial(scipy_minimize,
                              method="L-BFGS-B",
                              options={"maxiter": 2}),
            quantum_instance=self.statevector_simulator,
        )
        result = vqe.compute_minimum_eigenvalue(Z)
        self.assertEqual(result.cost_function_evals, 20)

    def test_optimizer_callable(self):
        """Test passing a optimizer directly as callable."""
        ansatz = RealAmplitudes(1, reps=1)
        vqe = VQE(ansatz=ansatz,
                  optimizer=_mock_optimizer,
                  quantum_instance=self.statevector_simulator)
        result = vqe.compute_minimum_eigenvalue(Z)
        self.assertTrue(
            np.all(result.optimal_point == np.zeros(ansatz.num_parameters)))

    def test_aux_operators_list(self):
        """Test list-based aux_operators."""
        wavefunction = self.ry_wavefunction
        vqe = VQE(ansatz=wavefunction,
                  quantum_instance=self.statevector_simulator)

        # Start with an empty list
        result = vqe.compute_minimum_eigenvalue(self.h2_op, aux_operators=[])
        self.assertAlmostEqual(result.eigenvalue.real,
                               self.h2_energy,
                               places=6)
        self.assertIsNone(result.aux_operator_eigenvalues)

        # Go again with two auxiliary operators
        aux_op1 = PauliSumOp.from_list([("II", 2.0)])
        aux_op2 = PauliSumOp.from_list([("II", 0.5), ("ZZ", 0.5), ("YY", 0.5),
                                        ("XX", -0.5)])
        aux_ops = [aux_op1, aux_op2]
        result = vqe.compute_minimum_eigenvalue(self.h2_op,
                                                aux_operators=aux_ops)
        self.assertAlmostEqual(result.eigenvalue.real,
                               self.h2_energy,
                               places=6)
        self.assertEqual(len(result.aux_operator_eigenvalues), 2)
        # expectation values
        self.assertAlmostEqual(result.aux_operator_eigenvalues[0][0],
                               2,
                               places=6)
        self.assertAlmostEqual(result.aux_operator_eigenvalues[1][0],
                               0,
                               places=6)
        # standard deviations
        self.assertAlmostEqual(result.aux_operator_eigenvalues[0][1], 0.0)
        self.assertAlmostEqual(result.aux_operator_eigenvalues[1][1], 0.0)

        # Go again with additional None and zero operators
        extra_ops = [*aux_ops, None, 0]
        result = vqe.compute_minimum_eigenvalue(self.h2_op,
                                                aux_operators=extra_ops)
        self.assertAlmostEqual(result.eigenvalue.real,
                               self.h2_energy,
                               places=6)
        self.assertEqual(len(result.aux_operator_eigenvalues), 4)
        # expectation values
        self.assertAlmostEqual(result.aux_operator_eigenvalues[0][0],
                               2,
                               places=6)
        self.assertAlmostEqual(result.aux_operator_eigenvalues[1][0],
                               0,
                               places=6)
        self.assertEqual(result.aux_operator_eigenvalues[2][0], 0.0)
        self.assertEqual(result.aux_operator_eigenvalues[3][0], 0.0)
        # standard deviations
        self.assertAlmostEqual(result.aux_operator_eigenvalues[0][1], 0.0)
        self.assertAlmostEqual(result.aux_operator_eigenvalues[1][1], 0.0)
        self.assertAlmostEqual(result.aux_operator_eigenvalues[2][1], 0.0)
        self.assertAlmostEqual(result.aux_operator_eigenvalues[3][1], 0.0)

    def test_aux_operators_dict(self):
        """Test dictionary compatibility of aux_operators"""
        wavefunction = self.ry_wavefunction
        vqe = VQE(ansatz=wavefunction,
                  quantum_instance=self.statevector_simulator)

        # Start with an empty dictionary
        result = vqe.compute_minimum_eigenvalue(self.h2_op, aux_operators={})
        self.assertAlmostEqual(result.eigenvalue.real,
                               self.h2_energy,
                               places=6)
        self.assertIsNone(result.aux_operator_eigenvalues)

        # Go again with two auxiliary operators
        aux_op1 = PauliSumOp.from_list([("II", 2.0)])
        aux_op2 = PauliSumOp.from_list([("II", 0.5), ("ZZ", 0.5), ("YY", 0.5),
                                        ("XX", -0.5)])
        aux_ops = {"aux_op1": aux_op1, "aux_op2": aux_op2}
        result = vqe.compute_minimum_eigenvalue(self.h2_op,
                                                aux_operators=aux_ops)
        self.assertAlmostEqual(result.eigenvalue.real,
                               self.h2_energy,
                               places=6)
        self.assertEqual(len(result.aux_operator_eigenvalues), 2)
        # expectation values
        self.assertAlmostEqual(result.aux_operator_eigenvalues["aux_op1"][0],
                               2,
                               places=6)
        self.assertAlmostEqual(result.aux_operator_eigenvalues["aux_op2"][0],
                               0,
                               places=6)
        # standard deviations
        self.assertAlmostEqual(result.aux_operator_eigenvalues["aux_op1"][1],
                               0.0)
        self.assertAlmostEqual(result.aux_operator_eigenvalues["aux_op2"][1],
                               0.0)

        # Go again with additional None and zero operators
        extra_ops = {**aux_ops, "None_operator": None, "zero_operator": 0}
        result = vqe.compute_minimum_eigenvalue(self.h2_op,
                                                aux_operators=extra_ops)
        self.assertAlmostEqual(result.eigenvalue.real,
                               self.h2_energy,
                               places=6)
        self.assertEqual(len(result.aux_operator_eigenvalues), 3)
        # expectation values
        self.assertAlmostEqual(result.aux_operator_eigenvalues["aux_op1"][0],
                               2,
                               places=6)
        self.assertAlmostEqual(result.aux_operator_eigenvalues["aux_op2"][0],
                               0,
                               places=6)
        self.assertEqual(result.aux_operator_eigenvalues["zero_operator"][0],
                         0.0)
        self.assertTrue(
            "None_operator" not in result.aux_operator_eigenvalues.keys())
        # standard deviations
        self.assertAlmostEqual(result.aux_operator_eigenvalues["aux_op1"][1],
                               0.0)
        self.assertAlmostEqual(result.aux_operator_eigenvalues["aux_op2"][1],
                               0.0)
        self.assertAlmostEqual(
            result.aux_operator_eigenvalues["zero_operator"][1], 0.0)

    def test_aux_operator_std_dev_pauli(self):
        """Test non-zero standard deviations of aux operators with PauliExpectation."""
        wavefunction = self.ry_wavefunction
        vqe = VQE(
            ansatz=wavefunction,
            expectation=PauliExpectation(),
            optimizer=COBYLA(maxiter=0),
            quantum_instance=self.qasm_simulator,
        )

        # Go again with two auxiliary operators
        aux_op1 = PauliSumOp.from_list([("II", 2.0)])
        aux_op2 = PauliSumOp.from_list([("II", 0.5), ("ZZ", 0.5), ("YY", 0.5),
                                        ("XX", -0.5)])
        aux_ops = [aux_op1, aux_op2]
        result = vqe.compute_minimum_eigenvalue(self.h2_op,
                                                aux_operators=aux_ops)
        self.assertEqual(len(result.aux_operator_eigenvalues), 2)
        # expectation values
        self.assertAlmostEqual(result.aux_operator_eigenvalues[0][0],
                               2.0,
                               places=6)
        self.assertAlmostEqual(result.aux_operator_eigenvalues[1][0],
                               0.6796875,
                               places=6)
        # standard deviations
        self.assertAlmostEqual(result.aux_operator_eigenvalues[0][1], 0.0)
        self.assertAlmostEqual(result.aux_operator_eigenvalues[1][1],
                               0.02534712219145965,
                               places=6)

        # Go again with additional None and zero operators
        aux_ops = [*aux_ops, None, 0]
        result = vqe.compute_minimum_eigenvalue(self.h2_op,
                                                aux_operators=aux_ops)
        self.assertEqual(len(result.aux_operator_eigenvalues), 4)
        # expectation values
        self.assertAlmostEqual(result.aux_operator_eigenvalues[0][0],
                               2.0,
                               places=6)
        self.assertAlmostEqual(result.aux_operator_eigenvalues[1][0],
                               0.57421875,
                               places=6)
        self.assertEqual(result.aux_operator_eigenvalues[2][0], 0.0)
        self.assertEqual(result.aux_operator_eigenvalues[3][0], 0.0)
        # # standard deviations
        self.assertAlmostEqual(result.aux_operator_eigenvalues[0][1], 0.0)
        self.assertAlmostEqual(result.aux_operator_eigenvalues[1][1],
                               0.026562146577166837,
                               places=6)
        self.assertAlmostEqual(result.aux_operator_eigenvalues[2][1], 0.0)
        self.assertAlmostEqual(result.aux_operator_eigenvalues[3][1], 0.0)

    @unittest.skipUnless(has_aer(),
                         "qiskit-aer doesn't appear to be installed.")
    def test_aux_operator_std_dev_aer_pauli(self):
        """Test non-zero standard deviations of aux operators with AerPauliExpectation."""
        wavefunction = self.ry_wavefunction
        vqe = VQE(
            ansatz=wavefunction,
            expectation=AerPauliExpectation(),
            optimizer=COBYLA(maxiter=0),
            quantum_instance=QuantumInstance(
                backend=Aer.get_backend("qasm_simulator"),
                shots=1,
                seed_simulator=algorithm_globals.random_seed,
                seed_transpiler=algorithm_globals.random_seed,
            ),
        )

        # Go again with two auxiliary operators
        aux_op1 = PauliSumOp.from_list([("II", 2.0)])
        aux_op2 = PauliSumOp.from_list([("II", 0.5), ("ZZ", 0.5), ("YY", 0.5),
                                        ("XX", -0.5)])
        aux_ops = [aux_op1, aux_op2]
        result = vqe.compute_minimum_eigenvalue(self.h2_op,
                                                aux_operators=aux_ops)
        self.assertEqual(len(result.aux_operator_eigenvalues), 2)
        # expectation values
        self.assertAlmostEqual(result.aux_operator_eigenvalues[0][0],
                               2.0,
                               places=6)
        self.assertAlmostEqual(result.aux_operator_eigenvalues[1][0],
                               0.6698863565455391,
                               places=6)
        # standard deviations
        self.assertAlmostEqual(result.aux_operator_eigenvalues[0][1], 0.0)
        self.assertAlmostEqual(result.aux_operator_eigenvalues[1][1],
                               0.0,
                               places=6)

        # Go again with additional None and zero operators
        aux_ops = [*aux_ops, None, 0]
        result = vqe.compute_minimum_eigenvalue(self.h2_op,
                                                aux_operators=aux_ops)
        self.assertEqual(len(result.aux_operator_eigenvalues), 4)
        # expectation values
        self.assertAlmostEqual(result.aux_operator_eigenvalues[0][0],
                               2.0,
                               places=6)
        self.assertAlmostEqual(result.aux_operator_eigenvalues[1][0],
                               0.6036400943063891,
                               places=6)
        self.assertEqual(result.aux_operator_eigenvalues[2][0], 0.0)
        self.assertEqual(result.aux_operator_eigenvalues[3][0], 0.0)
        # standard deviations
        self.assertAlmostEqual(result.aux_operator_eigenvalues[0][1], 0.0)
        self.assertAlmostEqual(result.aux_operator_eigenvalues[1][1],
                               0.0,
                               places=6)
        self.assertAlmostEqual(result.aux_operator_eigenvalues[2][1], 0.0)
        self.assertAlmostEqual(result.aux_operator_eigenvalues[3][1], 0.0)

    def test_2step_transpile(self):
        """Test the two-step transpiler pass."""
        # count how often the pass for parameterized circuits is called
        pre_counter = LogPass("pre_passmanager")
        pre_pass = PassManager(pre_counter)
        config = PassManagerConfig(basis_gates=["u3", "cx"])
        pre_pass += level_1_pass_manager(config)

        # ... and the pass for bound circuits
        bound_counter = LogPass("bound_pass_manager")
        bound_pass = PassManager(bound_counter)

        quantum_instance = QuantumInstance(
            backend=BasicAer.get_backend("statevector_simulator"),
            basis_gates=["u3", "cx"],
            pass_manager=pre_pass,
            bound_pass_manager=bound_pass,
        )

        optimizer = SPSA(maxiter=5, learning_rate=0.01, perturbation=0.01)

        vqe = VQE(optimizer=optimizer, quantum_instance=quantum_instance)
        _ = vqe.compute_minimum_eigenvalue(Z)

        with self.assertLogs(logger, level="INFO") as cm:
            _ = vqe.compute_minimum_eigenvalue(Z)

        expected = [
            "pre_passmanager",
            "bound_pass_manager",
            "bound_pass_manager",
            "bound_pass_manager",
            "bound_pass_manager",
            "bound_pass_manager",
            "bound_pass_manager",
            "bound_pass_manager",
            "bound_pass_manager",
            "bound_pass_manager",
            "bound_pass_manager",
            "bound_pass_manager",
            "pre_passmanager",
            "bound_pass_manager",
        ]
        self.assertEqual([record.message for record in cm.records], expected)

    def test_construct_eigenstate_from_optpoint(self):
        """Test constructing the eigenstate from the optimal point, if the default ansatz is used."""

        # use Hamiltonian yielding more than 11 parameters in the default ansatz
        hamiltonian = Z ^ Z ^ Z
        optimizer = SPSA(maxiter=1, learning_rate=0.01, perturbation=0.01)
        quantum_instance = QuantumInstance(
            backend=BasicAer.get_backend("statevector_simulator"),
            basis_gates=["u3", "cx"])
        vqe = VQE(optimizer=optimizer, quantum_instance=quantum_instance)
        result = vqe.compute_minimum_eigenvalue(hamiltonian)

        optimal_circuit = vqe.ansatz.bind_parameters(result.optimal_point)
        self.assertTrue(Statevector(result.eigenstate).equiv(optimal_circuit))
 def test_cg(self):
     """ cg test """
     optimizer = CG(maxiter=1000, tol=1e-06)
     res = self._optimize(optimizer)
     self.assertLessEqual(res[2], 10000)
Example #6
0
class TestVQE(QiskitAlgorithmsTestCase):
    """Test VQE"""
    def setUp(self):
        super().setUp()
        self.seed = 50
        algorithm_globals.random_seed = self.seed
        self.h2_op = (-1.052373245772859 * (I ^ I) + 0.39793742484318045 *
                      (I ^ Z) - 0.39793742484318045 * (Z ^ I) -
                      0.01128010425623538 * (Z ^ Z) + 0.18093119978423156 *
                      (X ^ X))
        self.h2_energy = -1.85727503

        self.ryrz_wavefunction = TwoLocal(rotation_blocks=["ry", "rz"],
                                          entanglement_blocks="cz")
        self.ry_wavefunction = TwoLocal(rotation_blocks="ry",
                                        entanglement_blocks="cz")

        self.qasm_simulator = QuantumInstance(
            BasicAer.get_backend("qasm_simulator"),
            shots=1024,
            seed_simulator=self.seed,
            seed_transpiler=self.seed,
        )
        self.statevector_simulator = QuantumInstance(
            BasicAer.get_backend("statevector_simulator"),
            shots=1,
            seed_simulator=self.seed,
            seed_transpiler=self.seed,
        )

    def test_basic_aer_statevector(self):
        """Test the VQE on BasicAer's statevector simulator."""
        wavefunction = self.ryrz_wavefunction
        vqe = VQE(
            ansatz=wavefunction,
            optimizer=L_BFGS_B(),
            quantum_instance=QuantumInstance(
                BasicAer.get_backend("statevector_simulator"),
                basis_gates=["u1", "u2", "u3", "cx", "id"],
                coupling_map=[[0, 1]],
                seed_simulator=algorithm_globals.random_seed,
                seed_transpiler=algorithm_globals.random_seed,
            ),
        )

        result = vqe.compute_minimum_eigenvalue(operator=self.h2_op)

        with self.subTest(msg="test eigenvalue"):
            self.assertAlmostEqual(result.eigenvalue.real, self.h2_energy)

        with self.subTest(msg="test dimension of optimal point"):
            self.assertEqual(len(result.optimal_point), 16)

        with self.subTest(msg="assert cost_function_evals is set"):
            self.assertIsNotNone(result.cost_function_evals)

        with self.subTest(msg="assert optimizer_time is set"):
            self.assertIsNotNone(result.optimizer_time)

    def test_circuit_input(self):
        """Test running the VQE on a plain QuantumCircuit object."""
        wavefunction = QuantumCircuit(2).compose(EfficientSU2(2))
        optimizer = SLSQP(maxiter=50)
        vqe = VQE(ansatz=wavefunction,
                  optimizer=optimizer,
                  quantum_instance=self.statevector_simulator)
        result = vqe.compute_minimum_eigenvalue(operator=self.h2_op)
        self.assertAlmostEqual(result.eigenvalue.real,
                               self.h2_energy,
                               places=5)

    @data(
        (MatrixExpectation(), 1),
        (AerPauliExpectation(), 1),
        (PauliExpectation(), 2),
    )
    @unpack
    def test_construct_circuit(self, expectation, num_circuits):
        """Test construct circuits returns QuantumCircuits and the right number of them."""
        try:
            wavefunction = EfficientSU2(2, reps=1)
            vqe = VQE(ansatz=wavefunction, expectation=expectation)
            params = [0] * wavefunction.num_parameters
            circuits = vqe.construct_circuit(parameter=params,
                                             operator=self.h2_op)

            self.assertEqual(len(circuits), num_circuits)
            for circuit in circuits:
                self.assertIsInstance(circuit, QuantumCircuit)
        except MissingOptionalLibraryError as ex:
            self.skipTest(str(ex))
            return

    def test_missing_varform_params(self):
        """Test specifying a variational form with no parameters raises an error."""
        circuit = QuantumCircuit(self.h2_op.num_qubits)
        vqe = VQE(
            ansatz=circuit,
            quantum_instance=BasicAer.get_backend("statevector_simulator"))
        with self.assertRaises(RuntimeError):
            vqe.compute_minimum_eigenvalue(operator=self.h2_op)

    @data(
        (SLSQP(maxiter=50), 5, 4),
        (SPSA(maxiter=150), 3, 2),  # max_evals_grouped=n or =2 if n>2
    )
    @unpack
    def test_max_evals_grouped(self, optimizer, places, max_evals_grouped):
        """VQE Optimizers test"""
        with self.assertWarns(DeprecationWarning):
            vqe = VQE(
                ansatz=self.ryrz_wavefunction,
                optimizer=optimizer,
                max_evals_grouped=max_evals_grouped,
                quantum_instance=self.statevector_simulator,
                sort_parameters_by_name=True,
            )
        result = vqe.compute_minimum_eigenvalue(operator=self.h2_op)
        self.assertAlmostEqual(result.eigenvalue.real,
                               self.h2_energy,
                               places=places)

    def test_basic_aer_qasm(self):
        """Test the VQE on BasicAer's QASM simulator."""
        optimizer = SPSA(maxiter=300, last_avg=5)
        wavefunction = self.ry_wavefunction

        vqe = VQE(
            ansatz=wavefunction,
            optimizer=optimizer,
            max_evals_grouped=1,
            quantum_instance=self.qasm_simulator,
        )

        # TODO benchmark this later.
        result = vqe.compute_minimum_eigenvalue(operator=self.h2_op)
        self.assertAlmostEqual(result.eigenvalue.real, -1.86823, places=2)

    def test_qasm_aux_operators_normalized(self):
        """Test VQE with qasm_simulator returns normalized aux_operator eigenvalues."""
        wavefunction = self.ry_wavefunction
        vqe = VQE(ansatz=wavefunction, quantum_instance=self.qasm_simulator)
        _ = vqe.compute_minimum_eigenvalue(operator=self.h2_op)

        opt_params = [
            3.50437328,
            3.87415376,
            0.93684363,
            5.92219622,
            -1.53527887,
            1.87941418,
            -4.5708326,
            0.70187027,
        ]

        vqe._ret.optimal_point = opt_params
        vqe._ret.optimal_parameters = dict(
            zip(sorted(wavefunction.parameters, key=lambda p: p.name),
                opt_params))

        with self.assertWarns(DeprecationWarning):
            optimal_vector = vqe.get_optimal_vector()

        self.assertAlmostEqual(sum(v**2 for v in optimal_vector.values()),
                               1.0,
                               places=4)

    @unittest.skipUnless(has_aer(),
                         "qiskit-aer doesn't appear to be installed.")
    def test_with_aer_statevector(self):
        """Test VQE with Aer's statevector_simulator."""
        backend = Aer.get_backend("aer_simulator_statevector")
        wavefunction = self.ry_wavefunction
        optimizer = L_BFGS_B()

        quantum_instance = QuantumInstance(
            backend,
            seed_simulator=algorithm_globals.random_seed,
            seed_transpiler=algorithm_globals.random_seed,
        )
        vqe = VQE(
            ansatz=wavefunction,
            optimizer=optimizer,
            max_evals_grouped=1,
            quantum_instance=quantum_instance,
        )

        result = vqe.compute_minimum_eigenvalue(operator=self.h2_op)
        self.assertAlmostEqual(result.eigenvalue.real,
                               self.h2_energy,
                               places=6)

    @unittest.skipUnless(has_aer(),
                         "qiskit-aer doesn't appear to be installed.")
    def test_with_aer_qasm(self):
        """Test VQE with Aer's qasm_simulator."""
        backend = Aer.get_backend("aer_simulator")
        optimizer = SPSA(maxiter=200, last_avg=5)
        wavefunction = self.ry_wavefunction

        quantum_instance = QuantumInstance(
            backend,
            seed_simulator=algorithm_globals.random_seed,
            seed_transpiler=algorithm_globals.random_seed,
        )

        vqe = VQE(
            ansatz=wavefunction,
            optimizer=optimizer,
            expectation=PauliExpectation(),
            quantum_instance=quantum_instance,
        )

        result = vqe.compute_minimum_eigenvalue(operator=self.h2_op)

        self.assertAlmostEqual(result.eigenvalue.real, -1.86305, places=2)

    @unittest.skipUnless(has_aer(),
                         "qiskit-aer doesn't appear to be installed.")
    def test_with_aer_qasm_snapshot_mode(self):
        """Test the VQE using Aer's qasm_simulator snapshot mode."""

        backend = Aer.get_backend("aer_simulator")
        optimizer = L_BFGS_B()
        wavefunction = self.ry_wavefunction

        quantum_instance = QuantumInstance(
            backend,
            shots=1,
            seed_simulator=algorithm_globals.random_seed,
            seed_transpiler=algorithm_globals.random_seed,
        )
        vqe = VQE(
            ansatz=wavefunction,
            optimizer=optimizer,
            expectation=AerPauliExpectation(),
            quantum_instance=quantum_instance,
        )

        result = vqe.compute_minimum_eigenvalue(operator=self.h2_op)
        self.assertAlmostEqual(result.eigenvalue.real,
                               self.h2_energy,
                               places=6)

    @unittest.skipUnless(has_aer(),
                         "qiskit-aer doesn't appear to be installed.")
    @data(
        CG(maxiter=1),
        L_BFGS_B(maxfun=1),
        P_BFGS(maxfun=1, max_processes=0),
        SLSQP(maxiter=1),
        TNC(maxiter=1),
    )
    def test_with_gradient(self, optimizer):
        """Test VQE using Gradient()."""
        quantum_instance = QuantumInstance(
            backend=Aer.get_backend("qasm_simulator"),
            shots=1,
            seed_simulator=algorithm_globals.random_seed,
            seed_transpiler=algorithm_globals.random_seed,
        )
        vqe = VQE(
            ansatz=self.ry_wavefunction,
            optimizer=optimizer,
            gradient=Gradient(),
            expectation=AerPauliExpectation(),
            quantum_instance=quantum_instance,
            max_evals_grouped=1000,
        )
        vqe.compute_minimum_eigenvalue(operator=self.h2_op)

    def test_with_two_qubit_reduction(self):
        """Test the VQE using TwoQubitReduction."""
        qubit_op = PauliSumOp.from_list([
            ("IIII", -0.8105479805373266),
            ("IIIZ", 0.17218393261915552),
            ("IIZZ", -0.22575349222402472),
            ("IZZI", 0.1721839326191556),
            ("ZZII", -0.22575349222402466),
            ("IIZI", 0.1209126326177663),
            ("IZZZ", 0.16892753870087912),
            ("IXZX", -0.045232799946057854),
            ("ZXIX", 0.045232799946057854),
            ("IXIX", 0.045232799946057854),
            ("ZXZX", -0.045232799946057854),
            ("ZZIZ", 0.16614543256382414),
            ("IZIZ", 0.16614543256382414),
            ("ZZZZ", 0.17464343068300453),
            ("ZIZI", 0.1209126326177663),
        ])
        tapered_qubit_op = TwoQubitReduction(num_particles=2).convert(qubit_op)
        for simulator in [self.qasm_simulator, self.statevector_simulator]:
            with self.subTest(f"Test for {simulator}."):
                vqe = VQE(
                    self.ry_wavefunction,
                    SPSA(maxiter=300, last_avg=5),
                    quantum_instance=simulator,
                )
                result = vqe.compute_minimum_eigenvalue(tapered_qubit_op)
                energy = -1.868 if simulator == self.qasm_simulator else self.h2_energy
                self.assertAlmostEqual(result.eigenvalue.real,
                                       energy,
                                       places=2)

    def test_callback(self):
        """Test the callback on VQE."""
        history = {"eval_count": [], "parameters": [], "mean": [], "std": []}

        def store_intermediate_result(eval_count, parameters, mean, std):
            history["eval_count"].append(eval_count)
            history["parameters"].append(parameters)
            history["mean"].append(mean)
            history["std"].append(std)

        optimizer = COBYLA(maxiter=3)
        wavefunction = self.ry_wavefunction

        vqe = VQE(
            ansatz=wavefunction,
            optimizer=optimizer,
            callback=store_intermediate_result,
            quantum_instance=self.qasm_simulator,
        )
        vqe.compute_minimum_eigenvalue(operator=self.h2_op)

        self.assertTrue(
            all(isinstance(count, int) for count in history["eval_count"]))
        self.assertTrue(
            all(isinstance(mean, float) for mean in history["mean"]))
        self.assertTrue(all(isinstance(std, float) for std in history["std"]))
        for params in history["parameters"]:
            self.assertTrue(all(isinstance(param, float) for param in params))

    def test_reuse(self):
        """Test re-using a VQE algorithm instance."""
        vqe = VQE()
        with self.subTest(msg="assert running empty raises AlgorithmError"):
            with self.assertRaises(AlgorithmError):
                _ = vqe.compute_minimum_eigenvalue(operator=self.h2_op)

        ansatz = TwoLocal(rotation_blocks=["ry", "rz"],
                          entanglement_blocks="cz")
        vqe.ansatz = ansatz
        with self.subTest(msg="assert missing operator raises AlgorithmError"):
            with self.assertRaises(AlgorithmError):
                _ = vqe.compute_minimum_eigenvalue(operator=self.h2_op)

        vqe.expectation = MatrixExpectation()
        vqe.quantum_instance = self.statevector_simulator
        with self.subTest(msg="assert VQE works once all info is available"):
            result = vqe.compute_minimum_eigenvalue(operator=self.h2_op)
            self.assertAlmostEqual(result.eigenvalue.real,
                                   self.h2_energy,
                                   places=5)

        operator = PrimitiveOp(
            np.array([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, 2, 0], [0, 0, 0,
                                                                  3]]))

        with self.subTest(msg="assert minimum eigensolver interface works"):
            result = vqe.compute_minimum_eigenvalue(operator=operator)
            self.assertAlmostEqual(result.eigenvalue.real, -1.0, places=5)

    def test_vqe_optimizer(self):
        """Test running same VQE twice to re-use optimizer, then switch optimizer"""
        vqe = VQE(
            optimizer=SLSQP(),
            quantum_instance=QuantumInstance(
                BasicAer.get_backend("statevector_simulator")),
        )

        def run_check():
            result = vqe.compute_minimum_eigenvalue(operator=self.h2_op)
            self.assertAlmostEqual(result.eigenvalue.real,
                                   -1.85727503,
                                   places=5)

        run_check()

        with self.subTest("Optimizer re-use"):
            run_check()

        with self.subTest("Optimizer replace"):
            vqe.optimizer = L_BFGS_B()
            run_check()

    @data(MatrixExpectation(), None)
    def test_backend_change(self, user_expectation):
        """Test that VQE works when backend changes."""
        vqe = VQE(
            ansatz=TwoLocal(rotation_blocks=["ry", "rz"],
                            entanglement_blocks="cz"),
            optimizer=SLSQP(maxiter=2),
            expectation=user_expectation,
            quantum_instance=BasicAer.get_backend("statevector_simulator"),
        )
        result0 = vqe.compute_minimum_eigenvalue(operator=self.h2_op)
        if user_expectation is not None:
            with self.subTest("User expectation kept."):
                self.assertEqual(vqe.expectation, user_expectation)

        vqe.quantum_instance = BasicAer.get_backend("qasm_simulator")

        # works also if no expectation is set, since it will be determined automatically
        result1 = vqe.compute_minimum_eigenvalue(operator=self.h2_op)

        if user_expectation is not None:
            with self.subTest(
                    "Change backend with user expectation, it is kept."):
                self.assertEqual(vqe.expectation, user_expectation)

        with self.subTest("Check results."):
            self.assertEqual(len(result0.optimal_point),
                             len(result1.optimal_point))

    def test_batch_evaluate_with_qnspsa(self):
        """Test batch evaluating with QNSPSA works."""
        ansatz = TwoLocal(2,
                          rotation_blocks=["ry", "rz"],
                          entanglement_blocks="cz")

        wrapped_backend = BasicAer.get_backend("qasm_simulator")
        inner_backend = BasicAer.get_backend("statevector_simulator")

        callcount = {"count": 0}

        def wrapped_run(circuits, **kwargs):
            kwargs["callcount"]["count"] += 1
            return inner_backend.run(circuits)

        wrapped_backend.run = partial(wrapped_run, callcount=callcount)

        fidelity = QNSPSA.get_fidelity(ansatz, backend=wrapped_backend)
        qnspsa = QNSPSA(fidelity, maxiter=5)

        vqe = VQE(
            ansatz=ansatz,
            optimizer=qnspsa,
            max_evals_grouped=100,
            quantum_instance=wrapped_backend,
        )
        _ = vqe.compute_minimum_eigenvalue(Z ^ Z)

        # 1 calibration + 1 stddev estimation + 1 initial blocking
        # + 5 (1 loss + 1 fidelity + 1 blocking) + 1 return loss + 1 VQE eval
        expected = 1 + 1 + 1 + 5 * 3 + 1 + 1

        self.assertEqual(callcount["count"], expected)
Example #7
0
 def test_cg(self):
     """cg test"""
     optimizer = CG(maxiter=1000, tol=1e-06)
     self.run_optimizer(optimizer, max_nfev=10000)