Example #1
0
 def test_qgan_training_run_algo_numpy(self):
     """ qgan training run algo numpy test """
     # Set number of qubits per data dimension as list of k qubit values[#q_0,...,#q_k-1]
     num_qubits = [2]
     # Batch size
     batch_size = 100
     # Set number of training epochs
     num_epochs = 5
     _qgan = QGAN(
         self._real_data,
         self._bounds,
         num_qubits,
         batch_size,
         num_epochs,
         discriminator=NumPyDiscriminator(n_features=len(num_qubits)),
         snapshot_dir=None)
     _qgan.seed = self.seed
     _qgan.set_generator()
     trained_statevector = _qgan.run(
         QuantumInstance(BasicAer.get_backend('statevector_simulator'),
                         seed_simulator=aqua_globals.random_seed,
                         seed_transpiler=aqua_globals.random_seed))
     trained_qasm = _qgan.run(
         QuantumInstance(BasicAer.get_backend('qasm_simulator'),
                         seed_simulator=aqua_globals.random_seed,
                         seed_transpiler=aqua_globals.random_seed))
     self.assertAlmostEqual(trained_qasm['rel_entr'],
                            trained_statevector['rel_entr'],
                            delta=0.1)
Example #2
0
    def test_qgan_training_run_algo_numpy_multivariate(self):
        """Test QGAN training using a NumPy discriminator, for multivariate distributions."""
        # Set number of qubits per data dimension as list of k qubit values[#q_0,...,#q_k-1]
        num_qubits = [1, 2]
        # Batch size
        batch_size = 100
        # Set number of training epochs
        num_epochs = 5

        # Reshape data in a multi-variate fashion
        # (two independent identically distributed variables,
        # each represented by half of the generated samples)
        real_data = self._real_data.reshape((-1, 2))
        bounds = [self._bounds, self._bounds]

        _qgan = QGAN(real_data,
                     bounds,
                     num_qubits,
                     batch_size,
                     num_epochs,
                     discriminator=NumPyDiscriminator(n_features=len(num_qubits)),
                     snapshot_dir=None)
        _qgan.seed = self.seed
        _qgan.set_generator()
        trained_statevector = _qgan.run(
            QuantumInstance(BasicAer.get_backend('statevector_simulator'),
                            seed_simulator=aqua_globals.random_seed,
                            seed_transpiler=aqua_globals.random_seed))
        trained_qasm = _qgan.run(QuantumInstance(BasicAer.get_backend('qasm_simulator'),
                                                 seed_simulator=aqua_globals.random_seed,
                                                 seed_transpiler=aqua_globals.random_seed))
        self.assertAlmostEqual(trained_qasm['rel_entr'], trained_statevector['rel_entr'], delta=0.1)
Example #3
0
 def test_qgan_save_model(self):
     """Test the QGAN functionality to store the current model."""
     # Set number of qubits per data dimension as list of k qubit values[#q_0,...,#q_k-1]
     num_qubits = [2]
     # Batch size
     batch_size = 100
     # Set number of training epochs
     num_epochs = 5
     with tempfile.TemporaryDirectory() as tmpdirname:
         _qgan = QGAN(self._real_data,
                      self._bounds,
                      num_qubits,
                      batch_size,
                      num_epochs,
                      discriminator=NumPyDiscriminator(n_features=len(num_qubits)),
                      snapshot_dir=tmpdirname)
         _qgan.seed = self.seed
         _qgan.set_generator()
         trained_statevector = _qgan.run(
             QuantumInstance(BasicAer.get_backend('statevector_simulator'),
                             seed_simulator=aqua_globals.random_seed,
                             seed_transpiler=aqua_globals.random_seed))
         trained_qasm = _qgan.run(QuantumInstance(BasicAer.get_backend('qasm_simulator'),
                                                  seed_simulator=aqua_globals.random_seed,
                                                  seed_transpiler=aqua_globals.random_seed))
     self.assertAlmostEqual(trained_qasm['rel_entr'], trained_statevector['rel_entr'], delta=0.1)
Example #4
0
 def test_qgan_training_run_algo_torch(self):
     """Test QGAN training using a PyTorch discriminator."""
     try:
         # Set number of qubits per data dimension as list of k qubit values[#q_0,...,#q_k-1]
         num_qubits = [2]
         # Batch size
         batch_size = 100
         # Set number of training epochs
         num_epochs = 5
         _qgan = QGAN(self._real_data,
                      self._bounds,
                      num_qubits,
                      batch_size,
                      num_epochs,
                      discriminator=PyTorchDiscriminator(n_features=len(num_qubits)),
                      snapshot_dir=None)
         _qgan.seed = self.seed
         _qgan.set_generator()
         trained_statevector = _qgan.run(QuantumInstance(
             BasicAer.get_backend('statevector_simulator'),
             seed_simulator=aqua_globals.random_seed,
             seed_transpiler=aqua_globals.random_seed))
         trained_qasm = _qgan.run(QuantumInstance(BasicAer.get_backend('qasm_simulator'),
                                                  seed_simulator=aqua_globals.random_seed,
                                                  seed_transpiler=aqua_globals.random_seed))
         self.assertAlmostEqual(trained_qasm['rel_entr'],
                                trained_statevector['rel_entr'], delta=0.1)
     except MissingOptionalLibraryError:
         self.skipTest('pytorch not installed, skipping test')
Example #5
0
print(type(reshaped_data))
#reshaped_norm_data = [t+1 for t in reshaped_data]
num_qubits = [4]
k = len(num_qubits)


# Set number of training epochs
# Note: The algorithm's runtime can be shortened by reducing the number of training epochs.
num_epochs = 10
# Batch size

# Initialize qGAN
qgan = QGAN(reshaped_data, bounds=bounds, num_qubits=num_qubits,
            batch_size=1, num_epochs=num_epochs, snapshot_dir="data")
print("QGAN set")
qgan.seed = 1
# Set quantum instance to run the quantum generator
quantum_instance = QuantumInstance(
    backend=BasicAer.get_backend('statevector_simulator'))
print("quantum_instance set")

# Set entangler map
entangler_map = [[0, 1]]


# Set an initial state for the generator circuit
init_dist = UniformDistribution(sum(num_qubits), low=bounds[0], high=bounds[1])
q = QuantumRegister(sum(num_qubits), name='q')
qc = QuantumCircuit(q)
init_dist.build(qc, q)
init_distribution = Custom(num_qubits=sum(num_qubits), circuit=qc)
Example #6
0
def QGAN_method(kk, num_qubit, epochs, batch, bound, snap, data):
    start = time.time()

    real_data = data

    # In[41]:

    # Number training data samples
    N = 1000

    # Load data samples from log-normal distribution with mean=1 and standard deviation=1
    mu = 1
    sigma = 1

    # real_data = np.random.lognormal(mean = mu, sigma=sigma, size=N)
    # print(real_data)

    # Set the data resolution
    # Set upper and lower data values as list of k min/max data values [[min_0,max_0],...,[min_k-1,max_k-1]]
    bounds = np.array([0, bound])

    # Set number of qubits per data dimension as list of k qubit values[#q_0,...,#q_k-1]
    num_qubits = [num_qubit]

    k = kk

    # In[52]:

    # Set number of training epochs
    # Note: The algorithm's runtime can be shortened by reducing the number of training epochs.
    num_epochs = epochs
    # Batch size
    batch_size = batch

    # Initialize qGAN
    qgan = QGAN(real_data,
                bounds,
                num_qubits,
                batch_size,
                num_epochs,
                snapshot_dir=snap)
    qgan.seed = 1
    # Set quantum instance to run the quantum generator
    quantum_instance = QuantumInstance(
        backend=BasicAer.get_backend('statevector_simulator'))

    # Set entangler map
    entangler_map = [[0, 1]]

    # Set an initial state for the generator circuit
    init_dist = UniformDistribution(sum(num_qubits),
                                    low=bounds[0],
                                    high=bounds[1])
    q = QuantumRegister(sum(num_qubits), name='q')
    qc = QuantumCircuit(q)
    init_dist.build(qc, q)
    init_distribution = Custom(num_qubits=sum(num_qubits), circuit=qc)
    var_form = RY(int(np.sum(num_qubits)),
                  depth=k,
                  initial_state=init_distribution,
                  entangler_map=entangler_map,
                  entanglement_gate='cz')

    # Set generator's initial parameters
    init_params = aqua_globals.random.rand(
        var_form._num_parameters) * 2 * np.pi
    # Set generator circuit
    g_circuit = UnivariateVariationalDistribution(int(sum(num_qubits)),
                                                  var_form,
                                                  init_params,
                                                  low=bounds[0],
                                                  high=bounds[1])
    # Set quantum generator
    qgan.set_generator(generator_circuit=g_circuit)
    # Set classical discriminator neural network
    discriminator = NumPyDiscriminator(len(num_qubits))
    qgan.set_discriminator(discriminator)

    # In[53]:

    # Run qGAN
    qgan.run(quantum_instance)

    # Runtime
    end = time.time()
    print('qGAN training runtime: ', (end - start) / 60., ' min')

    return qgan