def test_conditional_value_at_risk(self, simulator):
        """ conditional value at risk test """
        # define backend to be used
        backend = BasicAer.get_backend(simulator)

        # set problem parameters
        n_z = 2
        z_max = 2
        # z_values = np.linspace(-z_max, z_max, 2 ** n_z)
        p_zeros = [0.15, 0.25]
        rhos = [0.1, 0.05]
        lgd = [1, 2]
        k_l = len(p_zeros)
        # alpha = 0.05

        # set var value
        var = 2
        var_prob = 0.961940

        # determine number of qubits required to represent total loss
        # n_s = WeightedSumOperator.get_required_sum_qubits(lgd)

        # create circuit factory (add Z qubits with weight/loss 0)
        agg = WeightedSumOperator(n_z + k_l, [0] * n_z + lgd)

        # define linear objective
        breakpoints = [0, var]
        slopes = [0, 1]
        offsets = [0, 0]  # subtract VaR and add it later to the estimate
        f_min = 0
        f_max = 3 - var
        c_approx = 0.25

        # construct circuit factory for uncertainty model (Gaussian Conditional Independence model)
        gci = GCI(n_z, z_max, p_zeros, rhos)

        cvar_objective = PwlObjective(
            agg.num_sum_qubits,
            0,
            2**agg.num_sum_qubits -
            1,  # max value that can be reached by the qubit register
            breakpoints,
            slopes,
            offsets,
            f_min,
            f_max,
            c_approx)

        multivariate_cvar = MultivariateProblem(gci, agg, cvar_objective)

        num_qubits = multivariate_cvar.num_target_qubits
        num_ancillas = multivariate_cvar.required_ancillas()

        q = QuantumRegister(num_qubits, name='q')
        q_a = QuantumRegister(num_ancillas, name='q_a')
        qc = QuantumCircuit(q, q_a)

        multivariate_cvar.build(qc, q, q_a)

        job = execute(qc, backend=backend)

        # evaluate resulting statevector
        value = 0
        for i, a_i in enumerate(job.result().get_statevector()):
            b = ('{0:0%sb}' %
                 multivariate_cvar.num_target_qubits).\
                format(i)[-multivariate_cvar.num_target_qubits:]
            a_m = np.round(np.real(a_i), decimals=4)
            if np.abs(a_m) > 1e-6 and b[0] == '1':
                value += a_m**2

        # normalize and add VaR to estimate
        value = multivariate_cvar.value_to_estimation(value)
        normalized_value = value / (1.0 - var_prob) + var

        # compare to precomputed solution
        self.assertEqual(0.0, np.round(normalized_value - 3.3796, decimals=4))
Example #2
0
# In[3]:

# set the model parameters
n_z = 2
z_max = 2
z_values = np.linspace(-z_max, z_max, 2**n_z)
p_zeros = [0.15, 0.25]
rhos = [0.1, 0.05]
lgd = [1, 2]
K = len(p_zeros)
alpha = 0.05

# In[4]:

# construct circuit factory for uncertainty model (Gaussian Conditional Independence model)
u = GCI(n_z, z_max, p_zeros, rhos)

# In[5]:

# determine the number of qubits required to represent the uncertainty model
num_qubits = u.num_target_qubits

# initialize quantum register and circuit
q = QuantumRegister(num_qubits, name='q')
qc = QuantumCircuit(q)

# construct circuit
u.build(qc, q)

# In[6]: