Example #1
0
    def __init__(self, value, spot_price, volatility, int_rate, days,
                 strike_price):
        self.value = value
        # Number of qubits to represent the uncertainty
        num_uncertainty_qubits = 3

        # Parameters
        try:
            S = float(spot_price)
            vol = float(volatility)
            r = float(int_rate)
            T = int(days) / 365
            strike_price = float(strike_price)
        except ValueError:
            print("Some parameters wrong !!! ")

        mu = ((r - 0.5 * vol**2) * T + np.log(S))
        sigma = vol * np.sqrt(T)
        mean = np.exp(mu + sigma**2 / 2)
        variance = (np.exp(sigma**2) - 1) * np.exp(2 * mu + sigma**2)
        stddev = np.sqrt(variance)

        low = np.maximum(0, mean - 3 * stddev)
        high = mean + 3 * stddev

        # Circuit factory for uncertainty model
        self.uncertainty_model = LogNormalDistribution(num_uncertainty_qubits,
                                                       mu=mu,
                                                       sigma=sigma,
                                                       low=low,
                                                       high=high)

        try:
            self.strike_price = float(strike_price)
        except ValueError:
            print("Some parameters wrong !!! ")

        # The approximation scaling for the payoff function
        c_approx_payoff = 0.25  #abs(S-self.strike_price)
        print(c_approx_payoff)

        breakpoints = [self.uncertainty_model.low, self.strike_price]

        if self.value == str("call"):
            slopes_payoff = [0, 1]
        else:
            slopes_payoff = [-1, 0]

        if self.value == str("call"):
            offsets_payoff = [0, 0]
        else:
            offsets_payoff = [
                self.strike_price - self.uncertainty_model.low, 0
            ]

        f_min_payoff = 0

        if self.value == str("call"):
            f_max_payoff = self.uncertainty_model.high - self.strike_price
        else:
            f_max_payoff = self.strike_price - self.uncertainty_model.low

        european_objective = PwlObjective(
            self.uncertainty_model.num_target_qubits,
            self.uncertainty_model.low, self.uncertainty_model.high,
            breakpoints, slopes_payoff, offsets_payoff, f_min_payoff,
            f_max_payoff, c_approx_payoff)

        # Circuit factory for payoff function
        self.european_payoff = UnivariateProblem(self.uncertainty_model,
                                                 european_objective)

        slopes_delta = [0, 0]

        if self.value == str("call"):
            offsets_delta = [0, 1]
        else:
            offsets_delta = [1, 0]

        f_min_delta = 0

        f_max_delta = 1

        c_approx_delta = 1

        european_delta_objective = PwlObjective(
            self.uncertainty_model.num_target_qubits,
            self.uncertainty_model.low, self.uncertainty_model.high,
            breakpoints, slopes_delta, offsets_delta, f_min_delta, f_max_delta,
            c_approx_delta)

        self.european_delta = UnivariateProblem(self.uncertainty_model,
                                                european_delta_objective)
Example #2
0
    def setUp(self):
        super().setUp()

        # number of qubits to represent the uncertainty
        num_uncertainty_qubits = 3

        # parameters for considered random distribution
        s_p = 2.0  # initial spot price
        vol = 0.4  # volatility of 40%
        r = 0.05  # annual interest rate of 4%
        t_m = 40 / 365  # 40 days to maturity

        # resulting parameters for log-normal distribution
        m_u = ((r - 0.5 * vol**2) * t_m + np.log(s_p))
        sigma = vol * np.sqrt(t_m)
        mean = np.exp(m_u + sigma**2 / 2)
        variance = (np.exp(sigma**2) - 1) * np.exp(2 * m_u + sigma**2)
        stddev = np.sqrt(variance)

        # lowest and highest value considered for the spot price;
        # in between, an equidistant discretization is considered.
        low = np.maximum(0, mean - 3 * stddev)
        high = mean + 3 * stddev

        # construct circuit factory for uncertainty model
        uncertainty_model = LogNormalDistribution(num_uncertainty_qubits,
                                                  mu=m_u,
                                                  sigma=sigma,
                                                  low=low,
                                                  high=high)

        # set the strike price (should be within the low and the high value of the uncertainty)
        strike_price = 1.896

        # set the approximation scaling for the payoff function
        c_approx = 0.1

        # setup piecewise linear objective function
        breakpoints = [uncertainty_model.low, strike_price]
        slopes = [0, 1]
        offsets = [0, 0]
        f_min = 0
        f_max = uncertainty_model.high - strike_price
        european_call_objective = PwlObjective(
            uncertainty_model.num_target_qubits, uncertainty_model.low,
            uncertainty_model.high, breakpoints, slopes, offsets, f_min, f_max,
            c_approx)

        # construct circuit factory for payoff function
        self.european_call = UnivariateProblem(uncertainty_model,
                                               european_call_objective)

        # construct circuit factory for payoff function
        self.european_call_delta = EuropeanCallDelta(
            uncertainty_model,
            strike_price=strike_price,
        )

        self._statevector = QuantumInstance(
            backend=BasicAer.get_backend('statevector_simulator'),
            seed_simulator=2,
            seed_transpiler=2)
        self._qasm = QuantumInstance(
            backend=BasicAer.get_backend('qasm_simulator'),
            shots=100,
            seed_simulator=2,
            seed_transpiler=2)
Example #3
0
# set the approximation scaling for the payoff function
c_approx = 0.25

# setup piecewise linear objective fcuntion
breakpoints = [uncertainty_model.low, strike_price_1, strike_price_2]
slopes = [0, 1, 0]
offsets = [0, 0, strike_price_2 - strike_price_1]
f_min = 0
f_max = strike_price_2 - strike_price_1
bull_spread_objective = PwlObjective(uncertainty_model.num_target_qubits,
                                     uncertainty_model.low,
                                     uncertainty_model.high, breakpoints,
                                     slopes, offsets, f_min, f_max, c_approx)

# construct circuit factory for payoff function
bull_spread = UnivariateProblem(uncertainty_model, bull_spread_objective)

# plot exact payoff function (evaluated on the grid of the uncertainty model)
x = uncertainty_model.values
y = np.minimum(np.maximum(0, x - strike_price_1),
               strike_price_2 - strike_price_1)
plt.plot(x, y, 'ro-')
plt.grid()
plt.title('Payoff Function', size=15)
plt.xlabel('Spot Price', size=15)
plt.ylabel('Payoff', size=15)
plt.xticks(x, size=15, rotation=90)
plt.yticks(size=15)
plt.show()

# evaluate exact expected value (normalized to the [0, 1] interval)