Example #1
0
 def test_uccsd_hf_aer_qasm(self):
     """ uccsd hf test with Aer qasm_simulator. """
     try:
         # pylint: disable=import-outside-toplevel
         from qiskit import Aer
     except Exception as ex:  # pylint: disable=broad-except
         self.skipTest(
             "Aer doesn't appear to be installed. Error: '{}'".format(
                 str(ex)))
         return
     backend = Aer.get_backend('qasm_simulator')
     optimizer = SPSA(maxiter=200, last_avg=5)
     algo = VQE(self.qubit_op,
                self.var_form,
                optimizer,
                expectation=PauliExpectation())
     result = algo.run(
         QuantumInstance(backend,
                         seed_simulator=aqua_globals.random_seed,
                         seed_transpiler=aqua_globals.random_seed))
     result = self.core.process_algorithm_result(result)
     self.assertAlmostEqual(result.energy, -1.138, places=2)
Example #2
0
    def convert(
        self,
        operator: OperatorBase,
        params: Optional[Union[ParameterVector, ParameterExpression,
                               List[ParameterExpression]]] = None
    ) -> OperatorBase:
        r"""
        Args:
            operator: The operator we are taking the gradient of.
            params: params: The parameters we are taking the gradient with respect to.

        Returns:
            An operator whose evaluation yields the Gradient.

        Raises:
            ValueError: If ``params`` contains a parameter not present in ``operator``.
        """

        if params is None:
            raise ValueError("No parameters were provided to differentiate")

        if isinstance(params, (ParameterVector, list)):
            param_grads = [self.convert(operator, param) for param in params]
            absent_params = [
                params[i] for i, grad_ops in enumerate(param_grads)
                if grad_ops is None
            ]
            if len(absent_params) > 0:
                raise ValueError(
                    "The following parameters do not appear in the provided operator: ",
                    absent_params)
            return ListOp(param_grads)

        param = params
        # Preprocessing
        expec_op = PauliExpectation(
            group_paulis=False).convert(operator).reduce()
        cleaned_op = self._factor_coeffs_out_of_composed_op(expec_op)
        return self.get_gradient(cleaned_op, param)
Example #3
0
    def test_construction(self):
        """Test the correct operator expression is constructed."""

        alpha = 0.5
        base_expecation = PauliExpectation()
        cvar_expecation = CVaRExpectation(alpha=alpha,
                                          expectation=base_expecation)

        with self.subTest('single operator'):
            op = ~StateFn(Z) @ Plus
            expected = CVaRMeasurement(Z, alpha) @ Plus
            cvar = cvar_expecation.convert(op)
            self.assertEqual(cvar, expected)

        with self.subTest('list operator'):
            op = ~StateFn(ListOp([Z ^ Z, I ^ Z])) @ (Plus ^ Plus)
            expected = ListOp([
                CVaRMeasurement((Z ^ Z), alpha) @ (Plus ^ Plus),
                CVaRMeasurement((I ^ Z), alpha) @ (Plus ^ Plus)
            ])
            cvar = cvar_expecation.convert(op)
            self.assertEqual(cvar, expected)
Example #4
0
    def test_uccsd_hf_aer_qasm(self):
        """ uccsd hf test with Aer qasm_simulator. """
        try:
            # pylint: disable=import-outside-toplevel
            from qiskit import Aer
        except Exception as ex:  # pylint: disable=broad-except
            self.skipTest(
                "Aer doesn't appear to be installed. Error: '{}'".format(
                    str(ex)))
            return
        backend = Aer.get_backend('qasm_simulator')
        optimizer = SPSA(maxiter=200, last_avg=5)
        solver = VQE(var_form=self.var_form,
                     optimizer=optimizer,
                     expectation=PauliExpectation(),
                     quantum_instance=QuantumInstance(
                         backend=backend,
                         seed_simulator=aqua_globals.random_seed,
                         seed_transpiler=aqua_globals.random_seed))

        gsc = GroundStateEigensolver(self.fermionic_transformation, solver)

        result = gsc.solve(self.driver)
        self.assertAlmostEqual(result.total_energies[0], -1.138, places=2)
Example #5
0
 def setUp(self) -> None:
     super().setUp()
     backend = BasicAer.get_backend('qasm_simulator')
     self.sampler = CircuitSampler(backend, attach_results=True)
     self.expect = PauliExpectation()
Example #6
0
class TestPauliExpectation(QiskitAquaTestCase):
    """Pauli Change of Basis Expectation tests."""

    def setUp(self) -> None:
        super().setUp()
        backend = BasicAer.get_backend('qasm_simulator')
        self.sampler = CircuitSampler(backend, attach_results=True)
        self.expect = PauliExpectation()

    def test_pauli_expect_pair(self):
        """ pauli expect pair test """
        op = (Z ^ Z)
        # wf = (Pl^Pl) + (Ze^Ze)
        wf = CX @ (H ^ I) @ Zero

        converted_meas = self.expect.convert(~StateFn(op) @ wf)
        self.assertAlmostEqual(converted_meas.eval(), 0, delta=.1)
        sampled = self.sampler.convert(converted_meas)
        self.assertAlmostEqual(sampled.eval(), 0, delta=.1)

    def test_pauli_expect_single(self):
        """ pauli expect single test """
        paulis = [Z, X, Y, I]
        states = [Zero, One, Plus, Minus, S @ Plus, S @ Minus]
        for pauli, state in itertools.product(paulis, states):
            converted_meas = self.expect.convert(~StateFn(pauli) @ state)
            matmulmean = state.adjoint().to_matrix() @ pauli.to_matrix() @ state.to_matrix()
            self.assertAlmostEqual(converted_meas.eval(), matmulmean, delta=.1)

            sampled = self.sampler.convert(converted_meas)
            self.assertAlmostEqual(sampled.eval(), matmulmean, delta=.1)

    def test_pauli_expect_op_vector(self):
        """ pauli expect op vector test """
        paulis_op = ListOp([X, Y, Z, I])
        converted_meas = self.expect.convert(~StateFn(paulis_op))

        plus_mean = (converted_meas @ Plus)
        np.testing.assert_array_almost_equal(plus_mean.eval(), [1, 0, 0, 1], decimal=1)
        sampled_plus = self.sampler.convert(plus_mean)
        np.testing.assert_array_almost_equal(sampled_plus.eval(), [1, 0, 0, 1], decimal=1)

        minus_mean = (converted_meas @ Minus)
        np.testing.assert_array_almost_equal(minus_mean.eval(), [-1, 0, 0, 1], decimal=1)
        sampled_minus = self.sampler.convert(minus_mean)
        np.testing.assert_array_almost_equal(sampled_minus.eval(), [-1, 0, 0, 1], decimal=1)

        zero_mean = (converted_meas @ Zero)
        np.testing.assert_array_almost_equal(zero_mean.eval(), [0, 0, 1, 1], decimal=1)
        sampled_zero = self.sampler.convert(zero_mean)
        np.testing.assert_array_almost_equal(sampled_zero.eval(), [0, 0, 1, 1], decimal=1)

        sum_zero = (Plus + Minus) * (.5 ** .5)
        sum_zero_mean = (converted_meas @ sum_zero)
        np.testing.assert_array_almost_equal(sum_zero_mean.eval(), [0, 0, 1, 1], decimal=1)
        sampled_zero_mean = self.sampler.convert(sum_zero_mean)
        # !!NOTE!!: Depolarizing channel (Sampling) means interference
        # does not happen between circuits in sum, so expectation does
        # not equal expectation for Zero!!
        np.testing.assert_array_almost_equal(sampled_zero_mean.eval(), [0, 0, 0, 1], decimal=1)

        for i, op in enumerate(paulis_op.oplist):
            mat_op = op.to_matrix()
            np.testing.assert_array_almost_equal(zero_mean.eval()[i],
                                                 Zero.adjoint().to_matrix() @
                                                 mat_op @ Zero.to_matrix(),
                                                 decimal=1)
            np.testing.assert_array_almost_equal(plus_mean.eval()[i],
                                                 Plus.adjoint().to_matrix() @
                                                 mat_op @ Plus.to_matrix(),
                                                 decimal=1)
            np.testing.assert_array_almost_equal(minus_mean.eval()[i],
                                                 Minus.adjoint().to_matrix() @
                                                 mat_op @ Minus.to_matrix(),
                                                 decimal=1)

    def test_pauli_expect_state_vector(self):
        """ pauli expect state vector test """
        states_op = ListOp([One, Zero, Plus, Minus])

        paulis_op = X
        converted_meas = self.expect.convert(~StateFn(paulis_op) @ states_op)
        np.testing.assert_array_almost_equal(converted_meas.eval(), [0, 0, 1, -1], decimal=1)

        sampled = self.sampler.convert(converted_meas)
        np.testing.assert_array_almost_equal(sampled.eval(), [0, 0, 1, -1], decimal=1)

        # Small test to see if execution results are accessible
        for composed_op in sampled:
            self.assertIn('counts', composed_op[1].execution_results)

    def test_pauli_expect_op_vector_state_vector(self):
        """ pauli expect op vector state vector test """
        paulis_op = ListOp([X, Y, Z, I])
        states_op = ListOp([One, Zero, Plus, Minus])

        valids = [[+0, 0, 1, -1],
                  [+0, 0, 0, 0],
                  [-1, 1, 0, -0],
                  [+1, 1, 1, 1]]
        converted_meas = self.expect.convert(~StateFn(paulis_op) @ states_op)
        np.testing.assert_array_almost_equal(converted_meas.eval(), valids, decimal=1)

        sampled = self.sampler.convert(converted_meas)
        np.testing.assert_array_almost_equal(sampled.eval(), valids, decimal=1)

    def test_not_to_matrix_called(self):
        """ 45 qubit calculation - literally will not work if to_matrix is
            somehow called (in addition to massive=False throwing an error)"""

        qs = 45
        states_op = ListOp([Zero ^ qs,
                            One ^ qs,
                            (Zero ^ qs) + (One ^ qs)])
        paulis_op = ListOp([Z ^ qs,
                            (I ^ Z ^ I) ^ int(qs / 3)])

        converted_meas = self.expect.convert(~StateFn(paulis_op) @ states_op)
        np.testing.assert_array_almost_equal(converted_meas.eval(), [[1, -1, 0], [1, -1, 0]])

    def test_grouped_pauli_expectation(self):
        """ grouped pauli expectation test """
        two_qubit_H2 = (-1.052373245772859 * I ^ I) + \
                       (0.39793742484318045 * I ^ Z) + \
                       (-0.39793742484318045 * Z ^ I) + \
                       (-0.01128010425623538 * Z ^ Z) + \
                       (0.18093119978423156 * X ^ X)
        wf = CX @ (H ^ I) @ Zero
        expect_op = PauliExpectation(group_paulis=False).convert(~StateFn(two_qubit_H2) @ wf)
        self.sampler._extract_circuitstatefns(expect_op)
        num_circuits_ungrouped = len(self.sampler._circuit_ops_cache)
        self.assertEqual(num_circuits_ungrouped, 5)

        expect_op_grouped = PauliExpectation(group_paulis=True).convert(~StateFn(two_qubit_H2) @ wf)
        sampler = CircuitSampler(BasicAer.get_backend('statevector_simulator'))
        sampler._extract_circuitstatefns(expect_op_grouped)
        num_circuits_grouped = len(sampler._circuit_ops_cache)
        self.assertEqual(num_circuits_grouped, 2)

    @unittest.skip(reason="IBMQ testing not available in general.")
    def test_ibmq_grouped_pauli_expectation(self):
        """ pauli expect op vector state vector test """
        from qiskit import IBMQ
        p = IBMQ.load_account()
        backend = p.get_backend('ibmq_qasm_simulator')
        paulis_op = ListOp([X, Y, Z, I])
        states_op = ListOp([One, Zero, Plus, Minus])

        valids = [[+0, 0, 1, -1],
                  [+0, 0, 0, 0],
                  [-1, 1, 0, -0],
                  [+1, 1, 1, 1]]
        converted_meas = self.expect.convert(~StateFn(paulis_op) @ states_op)
        sampled = CircuitSampler(backend).convert(converted_meas)
        np.testing.assert_array_almost_equal(sampled.eval(), valids, decimal=1)

    def test_multi_representation_ops(self):
        """ Test observables with mixed representations """
        mixed_ops = ListOp([X.to_matrix_op(),
                            H,
                            H + I,
                            X])
        converted_meas = self.expect.convert(~StateFn(mixed_ops))

        plus_mean = (converted_meas @ Plus)
        sampled_plus = self.sampler.convert(plus_mean)
        np.testing.assert_array_almost_equal(sampled_plus.eval(),
                                             [1, .5**.5, (1 + .5**.5), 1],
                                             decimal=1)
    def test_h2_bopes_sampler(self):
        """Test BOPES Sampler on H2"""
        seed = 50
        aqua_globals.random_seed = seed

        # Molecule
        dof = partial(Molecule.absolute_distance, atom_pair=(1, 0))
        m = Molecule(geometry=[['H', [0., 0., 1.]], ['H', [0., 0.45, 1.]]],
                     degrees_of_freedom=[dof])

        f_t = FermionicTransformation()
        driver = PySCFDriver(molecule=m)

        qubitop, _ = f_t.transform(driver)

        # Quantum Instance:
        shots = 1
        backend = 'statevector_simulator'
        quantum_instance = QuantumInstance(BasicAer.get_backend(backend),
                                           shots=shots)
        quantum_instance.run_config.seed_simulator = seed
        quantum_instance.compile_config['seed_transpiler'] = seed

        # Variational form
        i_state = HartreeFock(
            num_orbitals=f_t._molecule_info['num_orbitals'],
            qubit_mapping=f_t._qubit_mapping,
            two_qubit_reduction=f_t._two_qubit_reduction,
            num_particles=f_t._molecule_info['num_particles'],
            sq_list=f_t._molecule_info['z2_symmetries'].sq_list)
        var_form = RealAmplitudes(qubitop.num_qubits,
                                  reps=1,
                                  entanglement='full',
                                  skip_unentangled_qubits=False)
        var_form.compose(i_state, front=True)

        # Classical optimizer:
        # Analytic Quantum Gradient Descent (AQGD) (with Epochs)
        aqgd_max_iter = [10] + [1] * 100
        aqgd_eta = [1e0] + [1.0 / k for k in range(1, 101)]
        aqgd_momentum = [0.5] + [0.5] * 100
        optimizer = AQGD(maxiter=aqgd_max_iter,
                         eta=aqgd_eta,
                         momentum=aqgd_momentum,
                         tol=1e-6,
                         averaging=4)

        # Min Eigensolver: VQE
        solver = VQE(var_form=var_form,
                     optimizer=optimizer,
                     quantum_instance=quantum_instance,
                     expectation=PauliExpectation())

        me_gss = GroundStateEigensolver(f_t, solver)

        # BOPES sampler
        sampler = BOPESSampler(gss=me_gss)

        # absolute internuclear distance in Angstrom
        points = [0.7, 1.0, 1.3]
        results = sampler.sample(driver, points)

        points_run = results.points
        energies = results.energies

        np.testing.assert_array_almost_equal(points_run, [0.7, 1.0, 1.3])
        np.testing.assert_array_almost_equal(
            energies, [-1.13618945, -1.10115033, -1.03518627], decimal=2)
Example #8
0
class TestVQE(QiskitAquaTestCase):
    """ Test VQE """
    def setUp(self):
        super().setUp()
        self.seed = 50
        aqua_globals.random_seed = self.seed
        self.h2_op = -1.052373245772859 * (I ^ I) \
            + 0.39793742484318045 * (I ^ Z) \
            - 0.39793742484318045 * (Z ^ I) \
            - 0.01128010425623538 * (Z ^ Z) \
            + 0.18093119978423156 * (X ^ X)
        self.h2_energy = -1.85727503

        self.ryrz_wavefunction = TwoLocal(rotation_blocks=['ry', 'rz'],
                                          entanglement_blocks='cz')
        self.ry_wavefunction = TwoLocal(rotation_blocks='ry',
                                        entanglement_blocks='cz')

        self.qasm_simulator = QuantumInstance(
            BasicAer.get_backend('qasm_simulator'),
            shots=1024,
            seed_simulator=self.seed,
            seed_transpiler=self.seed)
        self.statevector_simulator = QuantumInstance(
            BasicAer.get_backend('statevector_simulator'),
            shots=1,
            seed_simulator=self.seed,
            seed_transpiler=self.seed)

    def test_basic_aer_statevector(self):
        """Test the VQE on BasicAer's statevector simulator."""
        wavefunction = self.ryrz_wavefunction
        vqe = VQE(self.h2_op, wavefunction, L_BFGS_B())

        result = vqe.run(
            QuantumInstance(BasicAer.get_backend('statevector_simulator'),
                            basis_gates=['u1', 'u2', 'u3', 'cx', 'id'],
                            coupling_map=[[0, 1]],
                            seed_simulator=aqua_globals.random_seed,
                            seed_transpiler=aqua_globals.random_seed))

        with self.subTest(msg='test eigenvalue'):
            self.assertAlmostEqual(result.eigenvalue.real, self.h2_energy)

        with self.subTest(msg='test dimension of optimal point'):
            self.assertEqual(len(result.optimal_point), 16)

        with self.subTest(msg='assert cost_function_evals is set'):
            self.assertIsNotNone(result.cost_function_evals)

        with self.subTest(msg='assert optimizer_time is set'):
            self.assertIsNotNone(result.optimizer_time)

    def test_circuit_input(self):
        """Test running the VQE on a plain QuantumCircuit object."""
        wavefunction = QuantumCircuit(2).compose(EfficientSU2(2))
        optimizer = SLSQP(maxiter=50)
        vqe = VQE(self.h2_op, wavefunction, optimizer=optimizer)
        result = vqe.run(self.statevector_simulator)
        self.assertAlmostEqual(result.eigenvalue.real,
                               self.h2_energy,
                               places=5)

    @data(
        (MatrixExpectation(), 1),
        (AerPauliExpectation(), 1),
        (PauliExpectation(), 2),
    )
    @unpack
    def test_construct_circuit(self, expectation, num_circuits):
        """Test construct circuits returns QuantumCircuits and the right number of them."""
        wavefunction = EfficientSU2(2, reps=1)
        vqe = VQE(self.h2_op, wavefunction, expectation=expectation)
        params = [0] * wavefunction.num_parameters
        circuits = vqe.construct_circuit(params)

        self.assertEqual(len(circuits), num_circuits)
        for circuit in circuits:
            self.assertIsInstance(circuit, QuantumCircuit)

    def test_legacy_operator(self):
        """Test the VQE accepts and converts the legacy WeightedPauliOperator."""
        pauli_dict = {
            'paulis': [{
                "coeff": {
                    "imag": 0.0,
                    "real": -1.052373245772859
                },
                "label": "II"
            }, {
                "coeff": {
                    "imag": 0.0,
                    "real": 0.39793742484318045
                },
                "label": "IZ"
            }, {
                "coeff": {
                    "imag": 0.0,
                    "real": -0.39793742484318045
                },
                "label": "ZI"
            }, {
                "coeff": {
                    "imag": 0.0,
                    "real": -0.01128010425623538
                },
                "label": "ZZ"
            }, {
                "coeff": {
                    "imag": 0.0,
                    "real": 0.18093119978423156
                },
                "label": "XX"
            }]
        }
        h2_op = WeightedPauliOperator.from_dict(pauli_dict)
        vqe = VQE(h2_op)
        self.assertEqual(vqe.operator, self.h2_op)

    def test_missing_varform_params(self):
        """Test specifying a variational form with no parameters raises an error."""
        circuit = QuantumCircuit(self.h2_op.num_qubits)
        vqe = VQE(self.h2_op, circuit)
        with self.assertRaises(RuntimeError):
            vqe.run(BasicAer.get_backend('statevector_simulator'))

    @data(
        (SLSQP(maxiter=50), 5, 4),
        (SPSA(maxiter=150), 3, 2),  # max_evals_grouped=n or =2 if n>2
    )
    @unpack
    def test_max_evals_grouped(self, optimizer, places, max_evals_grouped):
        """ VQE Optimizers test """
        vqe = VQE(self.h2_op,
                  self.ryrz_wavefunction,
                  optimizer,
                  max_evals_grouped=max_evals_grouped,
                  quantum_instance=self.statevector_simulator)
        result = vqe.run()
        self.assertAlmostEqual(result.eigenvalue.real,
                               self.h2_energy,
                               places=places)

    def test_basic_aer_qasm(self):
        """Test the VQE on BasicAer's QASM simulator."""
        optimizer = SPSA(maxiter=300, last_avg=5)
        wavefunction = self.ry_wavefunction

        vqe = VQE(self.h2_op, wavefunction, optimizer, max_evals_grouped=1)

        # TODO benchmark this later.
        result = vqe.run(self.qasm_simulator)
        self.assertAlmostEqual(result.eigenvalue.real, -1.86823, places=2)

    def test_with_aer_statevector(self):
        """Test VQE with Aer's statevector_simulator."""
        try:
            # pylint: disable=import-outside-toplevel
            from qiskit import Aer
        except Exception as ex:  # pylint: disable=broad-except
            self.skipTest(
                "Aer doesn't appear to be installed. Error: '{}'".format(
                    str(ex)))
            return
        backend = Aer.get_backend('statevector_simulator')
        wavefunction = self.ry_wavefunction
        optimizer = L_BFGS_B()

        vqe = VQE(self.h2_op, wavefunction, optimizer, max_evals_grouped=1)

        quantum_instance = QuantumInstance(
            backend,
            seed_simulator=aqua_globals.random_seed,
            seed_transpiler=aqua_globals.random_seed)
        result = vqe.run(quantum_instance)
        self.assertAlmostEqual(result.eigenvalue.real,
                               self.h2_energy,
                               places=6)

    def test_with_aer_qasm(self):
        """Test VQE with Aer's qasm_simulator."""
        try:
            # pylint: disable=import-outside-toplevel
            from qiskit import Aer
        except Exception as ex:  # pylint: disable=broad-except
            self.skipTest(
                "Aer doesn't appear to be installed. Error: '{}'".format(
                    str(ex)))
            return
        backend = Aer.get_backend('qasm_simulator')
        optimizer = SPSA(maxiter=200, last_avg=5)
        wavefunction = self.ry_wavefunction

        vqe = VQE(self.h2_op,
                  wavefunction,
                  optimizer,
                  expectation=PauliExpectation())

        quantum_instance = QuantumInstance(
            backend,
            seed_simulator=aqua_globals.random_seed,
            seed_transpiler=aqua_globals.random_seed)
        result = vqe.run(quantum_instance)
        self.assertAlmostEqual(result.eigenvalue.real, -1.86305, places=2)

    def test_with_aer_qasm_snapshot_mode(self):
        """Test the VQE using Aer's qasm_simulator snapshot mode."""
        try:
            # pylint: disable=import-outside-toplevel
            from qiskit import Aer
        except Exception as ex:  # pylint: disable=broad-except
            self.skipTest(
                "Aer doesn't appear to be installed. Error: '{}'".format(
                    str(ex)))
            return
        backend = Aer.get_backend('qasm_simulator')
        optimizer = L_BFGS_B()
        wavefunction = self.ry_wavefunction

        vqe = VQE(self.h2_op,
                  wavefunction,
                  optimizer,
                  expectation=AerPauliExpectation())

        quantum_instance = QuantumInstance(
            backend,
            shots=1,
            seed_simulator=aqua_globals.random_seed,
            seed_transpiler=aqua_globals.random_seed)
        result = vqe.run(quantum_instance)
        self.assertAlmostEqual(result.eigenvalue.real,
                               self.h2_energy,
                               places=6)

    def test_callback(self):
        """Test the callback on VQE."""
        history = {'eval_count': [], 'parameters': [], 'mean': [], 'std': []}

        def store_intermediate_result(eval_count, parameters, mean, std):
            history['eval_count'].append(eval_count)
            history['parameters'].append(parameters)
            history['mean'].append(mean)
            history['std'].append(std)

        optimizer = COBYLA(maxiter=3)
        wavefunction = self.ry_wavefunction

        vqe = VQE(self.h2_op,
                  wavefunction,
                  optimizer,
                  callback=store_intermediate_result)
        vqe.run(self.qasm_simulator)

        self.assertTrue(
            all(isinstance(count, int) for count in history['eval_count']))
        self.assertTrue(
            all(isinstance(mean, float) for mean in history['mean']))
        self.assertTrue(all(isinstance(std, float) for std in history['std']))
        for params in history['parameters']:
            self.assertTrue(all(isinstance(param, float) for param in params))

    def test_reuse(self):
        """Test re-using a VQE algorithm instance."""
        vqe = VQE()
        with self.subTest(msg='assert running empty raises AquaError'):
            with self.assertRaises(AquaError):
                _ = vqe.run()

        var_form = TwoLocal(rotation_blocks=['ry', 'rz'],
                            entanglement_blocks='cz')
        vqe.var_form = var_form
        with self.subTest(msg='assert missing operator raises AquaError'):
            with self.assertRaises(AquaError):
                _ = vqe.run()

        vqe.operator = self.h2_op
        with self.subTest(msg='assert missing backend raises AquaError'):
            with self.assertRaises(AquaError):
                _ = vqe.run()

        vqe.quantum_instance = self.statevector_simulator
        with self.subTest(msg='assert VQE works once all info is available'):
            result = vqe.run()
            self.assertAlmostEqual(result.eigenvalue.real,
                                   self.h2_energy,
                                   places=5)

        operator = PrimitiveOp(
            np.array([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, 2, 0], [0, 0, 0,
                                                                  3]]))

        with self.subTest(msg='assert minimum eigensolver interface works'):
            result = vqe.compute_minimum_eigenvalue(operator)
            self.assertAlmostEqual(result.eigenvalue.real, -1.0, places=5)

    def test_vqe_optimizer(self):
        """ Test running same VQE twice to re-use optimizer, then switch optimizer """
        vqe = VQE(self.h2_op,
                  optimizer=SLSQP(),
                  quantum_instance=QuantumInstance(
                      BasicAer.get_backend('statevector_simulator')))

        def run_check():
            result = vqe.compute_minimum_eigenvalue()
            self.assertAlmostEqual(result.eigenvalue.real,
                                   -1.85727503,
                                   places=5)

        run_check()

        with self.subTest('Optimizer re-use'):
            run_check()

        with self.subTest('Optimizer replace'):
            vqe.optimizer = L_BFGS_B()
            run_check()

    def test_vqe_expectation_select(self):
        """Test expectation selection with Aer's qasm_simulator."""
        try:
            # pylint: disable=import-outside-toplevel
            from qiskit import Aer
        except Exception as ex:  # pylint: disable=broad-except
            self.skipTest(
                "Aer doesn't appear to be installed. Error: '{}'".format(
                    str(ex)))
            return
        backend = Aer.get_backend('qasm_simulator')

        with self.subTest('Defaults'):
            vqe = VQE(self.h2_op, quantum_instance=backend)
            self.assertIsInstance(vqe.expectation, PauliExpectation)

        with self.subTest('Include custom'):
            vqe = VQE(self.h2_op,
                      include_custom=True,
                      quantum_instance=backend)
            self.assertIsInstance(vqe.expectation, AerPauliExpectation)

        with self.subTest('Set explicitly'):
            vqe = VQE(self.h2_op,
                      expectation=AerPauliExpectation(),
                      quantum_instance=backend)
            self.assertIsInstance(vqe.expectation, AerPauliExpectation)

    @unittest.skip(reason="IBMQ testing not available in general.")
    def test_ibmq(self):
        """ IBMQ VQE Test """
        from qiskit import IBMQ
        provider = IBMQ.load_account()
        backend = provider.get_backend('ibmq_qasm_simulator')
        ansatz = TwoLocal(rotation_blocks=['ry', 'rz'],
                          entanglement_blocks='cz')

        opt = SLSQP(maxiter=1)
        opt.set_max_evals_grouped(100)
        vqe = VQE(self.h2_op, ansatz, SLSQP(maxiter=2))

        result = vqe.run(backend)
        print(result)
        self.assertAlmostEqual(result.eigenvalue.real, self.h2_energy)
        np.testing.assert_array_almost_equal(result.eigenvalue.real,
                                             self.h2_energy, 5)
        self.assertEqual(len(result.optimal_point), 16)
        self.assertIsNotNone(result.cost_function_evals)
        self.assertIsNotNone(result.optimizer_time)

    @data(MatrixExpectation(), None)
    def test_backend_change(self, user_expectation):
        """Test that VQE works when backend changes."""
        vqe = VQE(
            operator=self.h2_op,
            var_form=TwoLocal(rotation_blocks=['ry', 'rz'],
                              entanglement_blocks='cz'),
            optimizer=SLSQP(maxiter=2),
            expectation=user_expectation,
            quantum_instance=BasicAer.get_backend('statevector_simulator'))
        result0 = vqe.run()
        if user_expectation is not None:
            with self.subTest('User expectation kept.'):
                self.assertEqual(vqe.expectation, user_expectation)
        else:
            with self.subTest('Expectation created.'):
                self.assertIsInstance(vqe.expectation, ExpectationBase)
        try:
            vqe.set_backend(BasicAer.get_backend('qasm_simulator'))
        except Exception as ex:  # pylint: disable=broad-except
            self.fail("Failed to change backend. Error: '{}'".format(str(ex)))
            return

        result1 = vqe.run()
        if user_expectation is not None:
            with self.subTest(
                    'Change backend with user expectation, it is kept.'):
                self.assertEqual(vqe.expectation, user_expectation)
        else:
            with self.subTest(
                    'Change backend without user expectation, one created.'):
                self.assertIsInstance(vqe.expectation, ExpectationBase)

        with self.subTest('Check results.'):
            self.assertEqual(len(result0.optimal_point),
                             len(result1.optimal_point))
# Calculate the expectation value for Ising Hamiltonian
print('expectation_value:', psi.adjoint().compose(op).compose(psi).eval().real)

# %% another way of calculating expectation


# define your backend or quantum instance (where you can add settings)
backend = Aer.get_backend('qasm_simulator')
q_instance = QuantumInstance(backend, shots=1024)

# define the state to sample
measurable_expression = StateFn(op, is_measurement=True).compose(psi)

# convert to expectation value
expectation = PauliExpectation().convert(measurable_expression)

# get state sampler (you can also pass the backend directly)
sampler = CircuitSampler(q_instance).convert(expectation)

# evaluate
print('Sampled:', sampler.eval().real)

# %%

print(qc)
print('Hamiltonian of Ising model:')
print(H.print_details())

# %% Randomly sample Clifford circuits and calculate <H> for each one.
# (E.g. only change single qubit gates, not their locations in the circuit)
Example #10
0
class TestCVaRExpectation(QiskitAquaTestCase):
    """Test the CVaR expectation object."""
    def test_construction(self):
        """Test the correct operator expression is constructed."""

        alpha = 0.5
        base_expecation = PauliExpectation()
        cvar_expecation = CVaRExpectation(alpha=alpha,
                                          expectation=base_expecation)

        with self.subTest('single operator'):
            op = ~StateFn(Z) @ Plus
            expected = CVaRMeasurement(Z, alpha) @ Plus
            cvar = cvar_expecation.convert(op)
            self.assertEqual(cvar, expected)

        with self.subTest('list operator'):
            op = ~StateFn(ListOp([Z ^ Z, I ^ Z])) @ (Plus ^ Plus)
            expected = ListOp([
                CVaRMeasurement((Z ^ Z), alpha) @ (Plus ^ Plus),
                CVaRMeasurement((I ^ Z), alpha) @ (Plus ^ Plus)
            ])
            cvar = cvar_expecation.convert(op)
            self.assertEqual(cvar, expected)

    def test_unsupported_expectation(self):
        """Assert passing an AerPauliExpectation raises an error."""
        expecation = AerPauliExpectation()
        with self.assertRaises(NotImplementedError):
            _ = CVaRExpectation(alpha=1, expectation=expecation)

    @data(PauliExpectation(), MatrixExpectation())
    def test_underlying_expectation(self, base_expecation):
        """Test the underlying expectation works correctly."""

        cvar_expecation = CVaRExpectation(alpha=0.3,
                                          expectation=base_expecation)
        circuit = QuantumCircuit(2)
        circuit.z(0)
        circuit.cp(0.5, 0, 1)
        circuit.t(1)
        op = ~StateFn(CircuitOp(circuit)) @ (Plus ^ 2)

        cvar = cvar_expecation.convert(op)
        expected = base_expecation.convert(op)

        # test if the operators have been transformed in the same manner
        self.assertEqual(cvar.oplist[0].primitive,
                         expected.oplist[0].primitive)

    def test_compute_variance(self):
        """Test if the compute_variance method works"""
        alphas = [0, .3, 0.5, 0.7, 1]
        correct_vars = [0, 0, 0, 0.8163, 1]
        for i, alpha in enumerate(alphas):
            base_expecation = PauliExpectation()
            cvar_expecation = CVaRExpectation(alpha=alpha,
                                              expectation=base_expecation)
            op = ~StateFn(Z ^ Z) @ (Plus ^ Plus)
            cvar_var = cvar_expecation.compute_variance(op)
            np.testing.assert_almost_equal(cvar_var,
                                           correct_vars[i],
                                           decimal=3)