def test_permute_on_list_op(self): """ Test if ListOp permute method is consistent with PrimitiveOps permute methods. """ op1 = (X ^ Y ^ Z).to_circuit_op() op2 = (Z ^ X ^ Y) # ComposedOp indices = [1, 2, 0] primitive_op = op1 @ op2 primitive_op_perm = primitive_op.permute(indices) # CircuitOp.permute composed_op = ComposedOp([op1, op2]) composed_op_perm = composed_op.permute(indices) # reduce the ListOp to PrimitiveOp to_primitive = composed_op_perm.oplist[0] @ composed_op_perm.oplist[1] # compare resulting PrimitiveOps equal = np.allclose(primitive_op_perm.to_matrix(), to_primitive.to_matrix()) self.assertTrue(equal) # TensoredOp indices = [3, 5, 4, 0, 2, 1] primitive_op = op1 ^ op2 primitive_op_perm = primitive_op.permute(indices) tensored_op = TensoredOp([op1, op2]) tensored_op_perm = tensored_op.permute(indices) # reduce the ListOp to PrimitiveOp composed_oplist = tensored_op_perm.oplist to_primitive = \ composed_oplist[0] @ (composed_oplist[1].oplist[0] ^ composed_oplist[1].oplist[1]) @ \ composed_oplist[2] # compare resulting PrimitiveOps equal = np.allclose(primitive_op_perm.to_matrix(), to_primitive.to_matrix()) self.assertTrue(equal) # SummedOp primitive_op = (X ^ Y ^ Z) summed_op = SummedOp([primitive_op]) indices = [1, 2, 0] primitive_op_perm = primitive_op.permute(indices) # PauliOp.permute summed_op_perm = summed_op.permute(indices) # reduce the ListOp to PrimitiveOp to_primitive = summed_op_perm.oplist[ 0] @ primitive_op @ summed_op_perm.oplist[2] # compare resulting PrimitiveOps equal = np.allclose(primitive_op_perm.to_matrix(), to_primitive.to_matrix()) self.assertTrue(equal)
def test_expand_on_list_op(self): """ Test if expanded ListOp has expected num_qubits. """ add_qubits = 3 # ComposedOp composed_op = ComposedOp([(X ^ Y ^ Z), (H ^ T), (Z ^ X ^ Y ^ Z).to_matrix_op()]) expanded = composed_op._expand_dim(add_qubits) self.assertEqual(composed_op.num_qubits + add_qubits, expanded.num_qubits) # TensoredOp tensored_op = TensoredOp([(X ^ Y), (Z ^ I)]) expanded = tensored_op._expand_dim(add_qubits) self.assertEqual(tensored_op.num_qubits + add_qubits, expanded.num_qubits) # SummedOp summed_op = SummedOp([(X ^ Y), (Z ^ I ^ Z)]) expanded = summed_op._expand_dim(add_qubits) self.assertEqual(summed_op.num_qubits + add_qubits, expanded.num_qubits)
def tensor(self, other: OperatorBase) -> OperatorBase: # Both dicts if isinstance(other, DictStateFn): new_dict = {k1 + k2: v1 * v2 for ((k1, v1,), (k2, v2)) in itertools.product(self.primitive.items(), other.primitive.items())} return StateFn(new_dict, coeff=self.coeff * other.coeff, is_measurement=self.is_measurement) # pylint: disable=cyclic-import,import-outside-toplevel from qiskit.aqua.operators import TensoredOp return TensoredOp([self, other])
def test_compose_with_indices(self): """ Test compose method using its permutation feature.""" pauli_op = (X ^ Y ^ Z) circuit_op = (T ^ H) matrix_op = (X ^ Y ^ H ^ T).to_matrix_op() evolved_op = EvolvedOp(matrix_op) # composition of PrimitiveOps num_qubits = 4 primitive_op = pauli_op @ circuit_op @ matrix_op composed_op = pauli_op @ circuit_op @ evolved_op self.assertEqual(primitive_op.num_qubits, num_qubits) self.assertEqual(composed_op.num_qubits, num_qubits) # with permutation num_qubits = 5 indices = [1, 4] permuted_primitive_op = evolved_op @ circuit_op.permute(indices) @ pauli_op @ matrix_op composed_primitive_op = \ evolved_op @ pauli_op.compose(circuit_op, permutation=indices, front=True) @ matrix_op self.assertTrue(np.allclose(permuted_primitive_op.to_matrix(), composed_primitive_op.to_matrix())) self.assertEqual(num_qubits, permuted_primitive_op.num_qubits) # ListOp num_qubits = 6 tensored_op = TensoredOp([pauli_op, circuit_op]) summed_op = pauli_op + circuit_op.permute([2, 1]) composed_op = circuit_op @ evolved_op @ matrix_op list_op = summed_op @ composed_op.compose(tensored_op, permutation=[1, 2, 3, 5, 4], front=True) self.assertEqual(num_qubits, list_op.num_qubits) num_qubits = 4 circuit_fn = CircuitStateFn(primitive=circuit_op.primitive, is_measurement=True) operator_fn = OperatorStateFn(primitive=circuit_op ^ circuit_op, is_measurement=True) no_perm_op = circuit_fn @ operator_fn self.assertEqual(no_perm_op.num_qubits, num_qubits) indices = [0, 4] perm_op = operator_fn.compose(circuit_fn, permutation=indices, front=True) self.assertEqual(perm_op.num_qubits, max(indices) + 1) # StateFn num_qubits = 3 dim = 2**num_qubits vec = [1.0/(i+1) for i in range(dim)] dic = {format(i, 'b').zfill(num_qubits): 1.0/(i+1) for i in range(dim)} is_measurement = True op_state_fn = OperatorStateFn(matrix_op, is_measurement=is_measurement) # num_qubit = 4 vec_state_fn = VectorStateFn(vec, is_measurement=is_measurement) # 3 dic_state_fn = DictStateFn(dic, is_measurement=is_measurement) # 3 circ_state_fn = CircuitStateFn(circuit_op.to_circuit(), is_measurement=is_measurement) # 2 composed_op = op_state_fn @ vec_state_fn @ dic_state_fn @ circ_state_fn self.assertEqual(composed_op.num_qubits, op_state_fn.num_qubits) # with permutation perm = [2, 4, 6] composed = \ op_state_fn @ dic_state_fn.compose(vec_state_fn, permutation=perm, front=True) @ \ circ_state_fn self.assertEqual(composed.num_qubits, max(perm) + 1)