def test_validation(self): """ Validation Test """ num_var = 3 # validate an object type of the input. with self.assertRaises(AquaError): docplex._validate_input_model("Model") # validate the types of the variables are binary or not with self.assertRaises(AquaError): mdl = Model(name='Error_integer_variables') x = { i: mdl.integer_var(name='x_{0}'.format(i)) for i in range(num_var) } obj_func = mdl.sum(x[i] for i in range(num_var)) mdl.maximize(obj_func) docplex.get_qubit_op(mdl) # validate types of constraints are equality constraints or not. with self.assertRaises(AquaError): mdl = Model(name='Error_inequality_constraints') x = { i: mdl.binary_var(name='x_{0}'.format(i)) for i in range(num_var) } obj_func = mdl.sum(x[i] for i in range(num_var)) mdl.maximize(obj_func) mdl.add_constraint(mdl.sum(x[i] for i in range(num_var)) <= 1) docplex.get_qubit_op(mdl)
def test_docplex_constant_and_quadratic_terms_in_object_function(self): """ Docplex Constant and Quadratic terms in Object function test """ # Create an Ising Hamiltonian with docplex laplacian = np.array([[-3., 1., 1., 1.], [1., -2., 1., -0.], [1., 1., -3., 1.], [1., -0., 1., -2.]]) mdl = Model() n = laplacian.shape[0] bias = [0] * 4 x = {i: mdl.binary_var(name='x_{0}'.format(i)) for i in range(n)} couplers_func = mdl.sum( 2 * laplacian[i, j] * (2 * x[i] - 1) * (2 * x[j] - 1) for i in range(n - 1) for j in range(i, n)) bias_func = mdl.sum(float(bias[i]) * x[i] for i in range(n)) ising_func = couplers_func + bias_func mdl.minimize(ising_func) qubit_op, offset = docplex.get_qubit_op(mdl) e_e = ExactEigensolver(qubit_op, k=1) result = e_e.run() expected_result = -22 # Compare objective self.assertEqual(result['energy'] + offset, expected_result)
def test_docplex_maxcut(self): """ Docplex maxcut test """ # Generating a graph of 4 nodes n = 4 graph = nx.Graph() graph.add_nodes_from(np.arange(0, n, 1)) elist = [(0, 1, 1.0), (0, 2, 1.0), (0, 3, 1.0), (1, 2, 1.0), (2, 3, 1.0)] graph.add_weighted_edges_from(elist) # Computing the weight matrix from the random graph w = np.zeros([n, n]) for i in range(n): for j in range(n): temp = graph.get_edge_data(i, j, default=0) if temp != 0: w[i, j] = temp['weight'] # Create an Ising Hamiltonian with docplex. mdl = Model(name='max_cut') mdl.node_vars = mdl.binary_var_list(list(range(4)), name='node') maxcut_func = mdl.sum(w[i, j] * mdl.node_vars[i] * (1 - mdl.node_vars[j]) for i in range(n) for j in range(n)) mdl.maximize(maxcut_func) qubit_op, offset = docplex.get_qubit_op(mdl) e_e = ExactEigensolver(qubit_op, k=1) result = e_e.run() ee_expected = ExactEigensolver(QUBIT_OP_MAXCUT, k=1) expected_result = ee_expected.run() # Compare objective self.assertEqual(result['energy'] + offset, expected_result['energy'] + OFFSET_MAXCUT)
def test_docplex_integer_constraints(self): """ Docplex Integer Constraints test """ # Create an Ising Hamiltonian with docplex mdl = Model(name='integer_constraints') x = {i: mdl.binary_var(name='x_{0}'.format(i)) for i in range(1, 5)} max_vars_func = mdl.sum(x[i] for i in range(1, 5)) mdl.maximize(max_vars_func) mdl.add_constraint(mdl.sum(i * x[i] for i in range(1, 5)) == 3) qubit_op, offset = docplex.get_qubit_op(mdl) e_e = ExactEigensolver(qubit_op, k=1) result = e_e.run() expected_result = -2 # Compare objective self.assertEqual(result['energy'] + offset, expected_result)