Example #1
0
    def filter_and_discriminate(self):
        """
        Test the process of discriminating and then applying the discriminator
        using a filter.
        """
        i0, q0, i1, q1 = 0., -1., 0., 1.

        discriminator = LinearIQDiscriminator(self.cal_results, self.qubits,
                                              ['00', '11'])

        iq_filter = DiscriminationFilter(discriminator)

        new_result = iq_filter.apply(self.cal_results)

        for nr in new_result.results:
            self.assertEqual(nr.meas_level, 2)

        for state in new_result.results[0].data.counts.to_dict():
            self.assertEqual(state, '0x0')

        for state in new_result.results[1].data.counts.to_dict():
            self.assertEqual(state, '0x3')

        self.assertEqual(len(new_result.get_memory(0)), self.shots)

        self.qubits = [0]

        discriminator = LinearIQDiscriminator(self.cal_results, self.qubits,
                                              ['0', '1'])

        self.assertEqual(discriminator.discriminate([[i0, q0]])[0], '0')
        self.assertEqual(discriminator.discriminate([[i1, q1]])[0], '1')
Example #2
0
 def test_get_base(self):
     """
     Test the get_base method to see if it can properly identify the number
     of basis states per quantum element. E.g. second excited level of
     transmon.
     """
     expected_states = {'a': '02', 'b': '01', 'c': '00', 'd': '11'}
     base = DiscriminationFilter.get_base(expected_states)
     self.assertEqual(base, 3)
Example #3
0
    def test_apply(self):
        """
        Set-up a discriminator based on simulated data, train it and then
        discriminate the calibration data.
        """
        meas_cal, _ = circuits.tensored_meas_cal([[0], [1]])

        backend = Aer.get_backend('qasm_simulator')
        job = qiskit.execute(meas_cal,
                             backend=backend,
                             shots=self.shots,
                             meas_level=1)

        cal_results = job.result()

        i0, q0, i1, q1 = 0., -1., 0., 1.
        ground = utils.create_shots(i0, q0, 0.1, 0.1, self.shots, self.qubits)
        excited = utils.create_shots(i1, q1, 0.1, 0.1, self.shots, self.qubits)

        cal_results.results[0].meas_level = 1
        cal_results.results[1].meas_level = 1
        cal_results.results[0].data = ExperimentResultData(memory=ground)
        cal_results.results[1].data = ExperimentResultData(memory=excited)

        discriminator = LinearIQDiscriminator(cal_results, self.qubits,
                                              ['00', '11'])

        d_filter = DiscriminationFilter(discriminator)

        self.assertEqual(cal_results.results[0].meas_level, 1)
        new_results = d_filter.apply(cal_results)

        self.assertEqual(new_results.results[0].meas_level, 2)

        counts_00 = new_results.results[0].data.counts.to_dict()['0x0']
        counts_11 = new_results.results[1].data.counts.to_dict()['0x3']

        self.assertEqual(counts_00, self.shots)
        self.assertEqual(counts_11, self.shots)
Example #4
0
    def test_apply(self):
        """
        Set-up a discriminator based on simulated data, train it and then
        discriminate the calibration data.
        """
        result_pkl = os.path.join(os.path.dirname(__file__), 'test_result.pkl')
        with open(result_pkl, 'rb') as handle:
            result = Result.from_dict(pickle.load(handle))

        discriminator = LinearIQDiscriminator(result, [0, 1])

        d_filter = DiscriminationFilter(discriminator)

        self.assertEqual(result.results[0].meas_level, 1)
        new_results = d_filter.apply(result)

        self.assertEqual(new_results.results[0].meas_level, 2)

        for idx in range(3):
            counts_00 = new_results.results[idx].data.counts.to_dict()['0x0']
            counts_11 = new_results.results[idx].data.counts.to_dict()['0x3']

            self.assertEqual(counts_00 + counts_11, 512)
Example #5
0
    def test_count(self):
        """
        Test to see if the filter properly converts the result of
        discriminator.discriminate to a dictionary of counts.
        """
        fitter = LinearIQDiscriminator([], [], [])
        d_filter = DiscriminationFilter(fitter, 2)

        raw_counts = d_filter.count(['01', '00', '01', '00', '00', '10'])
        self.assertEqual(raw_counts['0x0'], 3)
        self.assertEqual(raw_counts['0x1'], 2)
        self.assertEqual(raw_counts['0x2'], 1)
        self.assertRaises(KeyError, getitem, raw_counts, '0x3')

        d_filter = DiscriminationFilter(fitter, 3)
        raw_counts = d_filter.count(['02', '02', '20', '21', '21', '02'])
        self.assertEqual(raw_counts['0x2'], 3)
        self.assertEqual(raw_counts['0x6'], 1)
        self.assertEqual(raw_counts['0x7'], 2)
Example #6
0
    def test_apply(self):
        """
        Set-up a discriminator based on simulated data, train it and then
        discriminate the calibration data.
        """
        cal_00_data = [[[1., 1.]], [[1.1, 0.9]], [[0.9, 1.1]], [[1., 1.1]],
                       [[0.9, 1.2]]]
        cal_11_data = [[[-1., -1.]], [[-1.1, -0.9]], [[-0.9, -1.1]],
                       [[-0.9, -1.2]], [[-1., -1.1]]]
        x90p_data = [[[-1.1, -1.]], [[1.1, 0.9]], [[-0.8, -1.0]], [[0.9, 1.1]],
                     [[1., 1.]]]

        result = Result.from_dict({
            'job_id':
            '',
            'backend_version':
            '1.3.0',
            'backend_name':
            'test',
            'qobj_id':
            '',
            'success':
            True,
            'results': [{
                "header": {
                    "name": "cal_0"
                },
                "shots": 5,
                "status": "DONE",
                'meas_level': 1,
                "success": True,
                "meas_return": "single",
                "data": {
                    "memory": cal_00_data
                }
            }, {
                "header": {
                    "name": "cal_1"
                },
                "shots": 5,
                "status": "DONE",
                'meas_level': 1,
                "success": True,
                "meas_return": "single",
                "data": {
                    "memory": cal_11_data
                }
            }, {
                "header": {
                    "name": "x90p"
                },
                "shots": 5,
                "status": "DONE",
                'meas_level': 1,
                "success": True,
                "meas_return": "single",
                "data": {
                    "memory": x90p_data
                }
            }]
        })

        discriminator = LinearIQDiscriminator(result, [0])

        d_filter = DiscriminationFilter(discriminator)

        self.assertEqual(result.results[0].meas_level, 1)
        new_results = d_filter.apply(result)

        self.assertEqual(new_results.results[0].meas_level, 2)

        for name in ['cal_0', 'cal_1', 'x90p']:
            counts = new_results.get_counts(name)
            counts_0 = counts.get('0', 0)
            counts_1 = counts.get('1', 0)

            self.assertEqual(counts_0 + counts_1, 5)

            if name == 'x90p':
                self.assertEqual(counts_0, 3)
                self.assertEqual(counts_1, 2)