def test_matrix_iter(self):
     """Test PauliSumOp dense matrix_iter method."""
     labels = ["III", "IXI", "IYY", "YIZ", "XYZ", "III"]
     coeffs = np.array([1, 2, 3, 4, 5, 6])
     table = PauliTable.from_labels(labels)
     coeff = 10
     op = PauliSumOp(SparsePauliOp(table, coeffs), coeff)
     for idx, i in enumerate(op.matrix_iter()):
         self.assertTrue(np.array_equal(i, coeff * coeffs[idx] * Pauli(labels[idx]).to_matrix()))
 def test_matrix_iter_sparse(self):
     """Test PauliSumOp sparse matrix_iter method."""
     labels = ['III', 'IXI', 'IYY', 'YIZ', 'XYZ', 'III']
     coeffs = np.array([1, 2, 3, 4, 5, 6])
     coeff = 10
     table = PauliTable.from_labels(labels)
     op = PauliSumOp(SparsePauliOp(table, coeffs), coeff)
     for idx, i in enumerate(op.matrix_iter(sparse=True)):
         self.assertTrue(
             np.array_equal(i.toarray(), coeff * coeffs[idx] *
                            Pauli(labels[idx]).to_matrix()))
Example #3
0
    def test_coder_operators(self):
        """Test runtime encoder and decoder for operators."""
        x = Parameter("x")
        y = x + 1
        qc = QuantumCircuit(1)
        qc.h(0)
        coeffs = np.array([1, 2, 3, 4, 5, 6])
        table = PauliTable.from_labels(
            ["III", "IXI", "IYY", "YIZ", "XYZ", "III"])
        op = (2.0 * I ^ I)
        z2_symmetries = Z2Symmetries(
            [Pauli("IIZI"), Pauli("ZIII")],
            [Pauli("IIXI"), Pauli("XIII")], [1, 3], [-1, 1])
        isqrt2 = 1 / np.sqrt(2)
        sparse = scipy.sparse.csr_matrix([[0, isqrt2, 0, isqrt2]])

        subtests = (
            PauliSumOp(SparsePauliOp(Pauli("XYZX"), coeffs=[2]), coeff=3),
            PauliSumOp(SparsePauliOp(Pauli("XYZX"), coeffs=[1]), coeff=y),
            PauliSumOp(SparsePauliOp(Pauli("XYZX"), coeffs=[1 + 2j]),
                       coeff=3 - 2j),
            PauliSumOp.from_list([("II", -1.052373245772859),
                                  ("IZ", 0.39793742484318045)]),
            PauliSumOp(SparsePauliOp(table, coeffs), coeff=10),
            MatrixOp(primitive=np.array([[0, -1j], [1j, 0]]), coeff=x),
            PauliOp(primitive=Pauli("Y"), coeff=x),
            CircuitOp(qc, coeff=x),
            EvolvedOp(op, coeff=x),
            TaperedPauliSumOp(SparsePauliOp(Pauli("XYZX"), coeffs=[2]),
                              z2_symmetries),
            StateFn(qc, coeff=x),
            CircuitStateFn(qc, is_measurement=True),
            DictStateFn("1" * 3, is_measurement=True),
            VectorStateFn(np.ones(2**3, dtype=complex)),
            OperatorStateFn(CircuitOp(QuantumCircuit(1))),
            SparseVectorStateFn(sparse),
            Statevector([1, 0]),
            CVaRMeasurement(Z, 0.2),
            ComposedOp([(X ^ Y ^ Z), (Z ^ X ^ Y ^ Z).to_matrix_op()]),
            SummedOp([X ^ X * 2, Y ^ Y], 2),
            TensoredOp([(X ^ Y), (Z ^ I)]),
            (Z ^ Z) ^ (I ^ 2),
        )
        for op in subtests:
            with self.subTest(op=op):
                encoded = json.dumps(op, cls=RuntimeEncoder)
                self.assertIsInstance(encoded, str)
                decoded = json.loads(encoded, cls=RuntimeDecoder)
                self.assertEqual(op, decoded)