Example #1
0
def optimize_circuit(circuit, coupling_list=None):
    """Use the qiskit transpiler module to perform a suite of optimizations on
    the given circuit, including imposing swap coupling.
    Args:
    circuit :: qiskit.QuantumCircuit - the circuit to optimize
    coupling_list :: [(int, int)] - the list of connected qubit pairs
                     if None is passed in, will not perform mapping

    Returns:
    optimized_circuit :: qiskit.QuantumCircuit - the optimized circuit
    """
    # TODO: optimize until gates count stays stagnant.
    # TODO: implement rotation merge for clifford gates as pass.
    merge_rotation_gates(circuit)

    coupling_map = None if coupling_list is None else CouplingMap(
        coupling_list)

    pass_manager = PassManager()
    pass_manager.append(HCancellation())
    pass_manager.append(CXCancellation())
    # Some CNOT identities are interleaved between others,
    # for this reason a second pass is required. More passes
    # may be required for other circuits.
    pass_manager.append(CXCancellation())
    if coupling_map is not None:
        pass_manager.append(BasicSwap(coupling_map))

    optimized_circuit = transpile(circuit,
                                  backend=state_backend,
                                  coupling_map=coupling_list,
                                  pass_manager=pass_manager)

    return optimized_circuit
Example #2
0
def compile_circuit ( circuit ):
	pm = PassManager()
	pm.append( CXCancellation() )
	pm.append( Optimize1qGates() )
	pm.append( CXCancellation() )
	pm.append( Optimize1qGates() )
	pm.append( CXCancellation() )
	pm.append( Optimize1qGates() )
	return transpile( circuit, basis_gates = ['u1', 'u2', 'u3', 'cx'], optimization_level = 2 )
    def test_pass_cx_cancellation(self):
        """Test the cx cancellation pass.

        It should cancel consecutive cx pairs on same qubits.
        """
        qr = QuantumRegister(2)
        circuit = QuantumCircuit(qr)
        circuit.h(qr[0])
        circuit.h(qr[0])
        circuit.cx(qr[0], qr[1])
        circuit.cx(qr[0], qr[1])
        circuit.cx(qr[0], qr[1])
        circuit.cx(qr[0], qr[1])
        circuit.cx(qr[1], qr[0])
        circuit.cx(qr[1], qr[0])

        pass_manager = PassManager()
        pass_manager.append(CXCancellation())
        out_circuit = pass_manager.run(circuit)

        expected = QuantumCircuit(qr)
        expected.h(qr[0])
        expected.h(qr[0])

        self.assertEqual(out_circuit, expected)
Example #4
0
    def apply(self, program, accelerator, options):
        # Import qiskit modules here so that users
        # who don't have qiskit can still use rest of xacc
        from qiskit import QuantumCircuit, transpile
        from qiskit.transpiler import PassManager
        from qiskit.transpiler.passes import CXCancellation

        # Map CompositeInstruction program to OpenQasm string
        openqasm_compiler = xacc.getCompiler('openqasm')
        src = openqasm_compiler.translate(program).replace('\\', '')

        # Create a QuantumCircuit
        circuit = QuantumCircuit.from_qasm_str(src)

        # Create the PassManager and run the pass
        pass_manager = PassManager()
        pass_manager.append(CXCancellation())
        out_circuit = transpile(circuit, pass_manager=pass_manager)

        # Map the output to OpenQasm and map to XACC IR
        out_src = out_circuit.qasm()
        out_src = '__qpu__ void ' + program.name(
        ) + '(qbit q) {\n' + out_src + "\n}"
        out_prog = openqasm_compiler.compile(out_src,
                                             accelerator).getComposites()[0]

        # update the given program CompositeInstruction reference
        program.clear()
        for inst in out_prog.getInstructions():
            program.addInstruction(inst)

        return
 def test_2q_unitary(self):
     """test 2 qubit unitary matrix"""
     backend = BasicAer.get_backend('qasm_simulator')
     qr = QuantumRegister(2)
     cr = ClassicalRegister(2)
     qc = QuantumCircuit(qr, cr)
     sigmax = numpy.array([[0, 1], [1, 0]])
     sigmay = numpy.array([[0, -1j], [1j, 0]])
     matrix = numpy.kron(sigmax, sigmay)
     qc.x(qr[0])
     uni2q = Unitary(matrix)
     qc.append(uni2q, [qr[0], qr[1]])
     passman = PassManager()
     passman.append(CXCancellation())
     qc2 = transpile(qc, backend, pass_manager=passman)
     # test of qasm output
     self.log.info(qc2.qasm())
     # test of text drawer
     self.log.info(qc2)
     dag = circuit_to_dag(qc)
     nodes = dag.twoQ_nodes()
     self.assertTrue(len(nodes) == 1)
     dnode = nodes[0]
     self.assertIsInstance(dnode.op, Unitary)
     for qubit in dnode.qargs:
         self.assertTrue(qubit[1] in [0, 1])
     self.assertTrue(numpy.allclose(dnode.op._representation, matrix))
     qc3 = dag_to_circuit(dag)
     self.assertEqual(qc2, qc3)
Example #6
0
def default_pass_manager(transpile_config):
    """
    The default pass manager that maps to the coupling map.

    Args:
        transpile_config (TranspileConfig)

    Returns:
        PassManager: A pass manager to map and optimize.
    """
    basis_gates = transpile_config.basis_gates
    coupling_map = transpile_config.coupling_map
    initial_layout = transpile_config.initial_layout
    seed_transpiler = transpile_config.seed_transpiler
    pass_manager = PassManager()
    pass_manager.append(SetLayout(initial_layout))
    pass_manager.append(Unroller(basis_gates))

    # Use the trivial layout if no layout is found
    pass_manager.append(
        TrivialLayout(coupling_map),
        condition=lambda property_set: not property_set['layout'])

    # if the circuit and layout already satisfy the coupling_constraints, use that layout
    # otherwise layout on the most densely connected physical qubit subset
    pass_manager.append(CheckMap(coupling_map))
    pass_manager.append(
        DenseLayout(coupling_map),
        condition=lambda property_set: not property_set['is_swap_mapped'])

    # Extend the the dag/layout with ancillas using the full coupling map
    pass_manager.append(FullAncillaAllocation(coupling_map))
    pass_manager.append(EnlargeWithAncilla())

    # Circuit must only contain 1- or 2-qubit interactions for swapper to work
    pass_manager.append(Unroll3qOrMore())

    # Swap mapper
    pass_manager.append(BarrierBeforeFinalMeasurements())
    pass_manager.append(
        LegacySwap(coupling_map, trials=20, seed=seed_transpiler))

    # Expand swaps
    pass_manager.append(Decompose(SwapGate))

    # Change CX directions
    pass_manager.append(CXDirection(coupling_map))

    # Simplify single qubit gates and CXs
    simplification_passes = [
        Optimize1qGates(),
        CXCancellation(),
        RemoveResetInZeroState()
    ]

    pass_manager.append(
        simplification_passes + [Depth(), FixedPoint('depth')],
        do_while=lambda property_set: not property_set['depth_fixed_point'])

    return pass_manager
 def test_2q_unitary(self):
     """test 2 qubit unitary matrix"""
     qr = QuantumRegister(2)
     cr = ClassicalRegister(2)
     qc = QuantumCircuit(qr, cr)
     sigmax = numpy.array([[0, 1], [1, 0]])
     sigmay = numpy.array([[0, -1j], [1j, 0]])
     matrix = numpy.kron(sigmax, sigmay)
     qc.x(qr[0])
     uni2q = UnitaryGate(matrix)
     qc.append(uni2q, [qr[0], qr[1]])
     passman = PassManager()
     passman.append(CXCancellation())
     qc2 = passman.run(qc)
     # test of qasm output
     self.log.info(qc2.qasm())
     # test of text drawer
     self.log.info(qc2)
     dag = circuit_to_dag(qc)
     nodes = dag.two_qubit_ops()
     self.assertEqual(len(nodes), 1)
     dnode = nodes[0]
     self.assertIsInstance(dnode.op, UnitaryGate)
     for qubit in dnode.qargs:
         self.assertIn(qubit.index, [0, 1])
     assert_allclose(dnode.op.to_matrix(), matrix)
     qc3 = dag_to_circuit(dag)
     self.assertEqual(qc2, qc3)
    def test_inverted_cx(self):
        """Test that CX order dependence is respected."""
        qr = QuantumRegister(4)
        circuit = QuantumCircuit(qr)
        circuit.cx(qr[0], qr[1])
        circuit.cx(qr[1], qr[0])
        circuit.cx(qr[0], qr[1])

        pass_manager = PassManager()
        pass_manager.append(CXCancellation())
        out_circuit = pass_manager.run(circuit)
        self.assertEqual(out_circuit, circuit)
    def test_swapped_cx(self):
        """Test that CX isn't cancelled if there are intermediary ops."""
        qr = QuantumRegister(4)
        circuit = QuantumCircuit(qr)
        circuit.cx(qr[1], qr[0])
        circuit.swap(qr[1], qr[2])
        circuit.cx(qr[1], qr[0])

        pass_manager = PassManager()
        pass_manager.append(CXCancellation())
        out_circuit = pass_manager.run(circuit)
        self.assertEqual(out_circuit, circuit)
    def test_pass_cx_cancellation_chained_cx(self):
        """Include a test were not all operations can be cancelled."""

        #       ┌───┐
        # q0_0: ┤ H ├──■─────────■───────
        #       ├───┤┌─┴─┐     ┌─┴─┐
        # q0_1: ┤ H ├┤ X ├──■──┤ X ├─────
        #       └───┘└───┘┌─┴─┐└───┘
        # q0_2: ──────────┤ X ├──■────■──
        #                 └───┘┌─┴─┐┌─┴─┐
        # q0_3: ───────────────┤ X ├┤ X ├
        #                      └───┘└───┘
        qr = QuantumRegister(4)
        circuit = QuantumCircuit(qr)
        circuit.h(qr[0])
        circuit.h(qr[1])
        circuit.cx(qr[0], qr[1])
        circuit.cx(qr[1], qr[2])
        circuit.cx(qr[0], qr[1])
        circuit.cx(qr[2], qr[3])
        circuit.cx(qr[2], qr[3])

        pass_manager = PassManager()
        pass_manager.append(CXCancellation())
        out_circuit = pass_manager.run(circuit)

        #       ┌───┐
        # q0_0: ┤ H ├──■─────────■──
        #       ├───┤┌─┴─┐     ┌─┴─┐
        # q0_1: ┤ H ├┤ X ├──■──┤ X ├
        #       └───┘└───┘┌─┴─┐└───┘
        # q0_2: ──────────┤ X ├─────
        #                 └───┘
        # q0_3: ────────────────────
        expected = QuantumCircuit(qr)
        expected.h(qr[0])
        expected.h(qr[1])
        expected.cx(qr[0], qr[1])
        expected.cx(qr[1], qr[2])
        expected.cx(qr[0], qr[1])

        self.assertEqual(out_circuit, expected)
    def test_pass_cx_cancellation_intermixed_ops(self):
        """Cancellation shouldn't be affected by the order of ops on different qubits."""
        qr = QuantumRegister(4)
        circuit = QuantumCircuit(qr)
        circuit.h(qr[0])
        circuit.h(qr[1])
        circuit.cx(qr[0], qr[1])
        circuit.cx(qr[2], qr[3])
        circuit.cx(qr[0], qr[1])
        circuit.cx(qr[2], qr[3])

        pass_manager = PassManager()
        pass_manager.append(CXCancellation())
        out_circuit = pass_manager.run(circuit)

        expected = QuantumCircuit(qr)
        expected.h(qr[0])
        expected.h(qr[1])

        self.assertEqual(out_circuit, expected)
Example #12
0
def get_map_circuit(circuit, coupling_list=None):

    #merge_rotation_gates(circuit)

    coupling_map = None if coupling_list is None else CouplingMap(
        couplinglist=coupling_list)
    bs = BasicSwap(coupling_map=coupling_map)
    pass_manager = PassManager(bs)
    # Some CNOT identities are interleaved between others,
    # for this reason a second pass is required. More passes
    # may be required for other circuits.
    pass_manager.append(CXCancellation())
    #if coupling_map is not None:
    #    pass_manager.append(BasicSwap(coupling_map))

    optimized_circuit = transpile(
        circuit,  #backend=state_backend,
        #coupling_map=coupling_map,
        pass_manager=pass_manager)

    return optimized_circuit
Example #13
0
    def test_pass_cx_cancellation(self):
        """Test the cx cancellation pass.

        It should cancel consecutive cx pairs on same qubits.
        """
        qr = QuantumRegister(2)
        circuit = QuantumCircuit(qr)
        circuit.h(qr[0])
        circuit.h(qr[0])
        circuit.cx(qr[0], qr[1])
        circuit.cx(qr[0], qr[1])
        circuit.cx(qr[0], qr[1])
        circuit.cx(qr[0], qr[1])
        circuit.cx(qr[1], qr[0])
        circuit.cx(qr[1], qr[0])

        pass_manager = PassManager()
        pass_manager.append(CXCancellation())
        out_circuit = transpile(circuit, pass_manager=pass_manager)
        resources_after = out_circuit.count_ops()

        self.assertNotIn('cx', resources_after)
Example #14
0
    def test_pass_cx_cancellation(self):
        """Test the cx cancellation pass.

        It should cancel consecutive cx pairs on same qubits.
        """
        q = QuantumRegister(2)
        circ = QuantumCircuit(q)
        circ.h(q[0])
        circ.h(q[0])
        circ.cx(q[0], q[1])
        circ.cx(q[0], q[1])
        circ.cx(q[0], q[1])
        circ.cx(q[0], q[1])
        circ.cx(q[1], q[0])
        circ.cx(q[1], q[0])
        dag_circuit = DAGCircuit.fromQuantumCircuit(circ)

        pass_manager = PassManager()
        pass_manager.add_pass(CXCancellation())
        dag_circuit = transpile(dag_circuit, pass_manager=pass_manager)
        resources_after = dag_circuit.count_ops()

        self.assertNotIn('cx', resources_after)
Example #15
0
    def test_pass_cx_cancellation_chained_cx(self):
        """Include a test were not all operations can be cancelled."""
        qr = QuantumRegister(4)
        circuit = QuantumCircuit(qr)
        circuit.h(qr[0])
        circuit.h(qr[1])
        circuit.cx(qr[0], qr[1])
        circuit.cx(qr[1], qr[2])
        circuit.cx(qr[0], qr[1])
        circuit.cx(qr[2], qr[3])
        circuit.cx(qr[2], qr[3])

        pass_manager = PassManager()
        pass_manager.append(CXCancellation())
        out_circuit = pass_manager.run(circuit)

        expected = QuantumCircuit(qr)
        expected.h(qr[0])
        expected.h(qr[1])
        expected.cx(qr[0], qr[1])
        expected.cx(qr[1], qr[2])
        expected.cx(qr[0], qr[1])

        self.assertEqual(out_circuit, expected)
Example #16
0
def level_1_pass_manager(pass_manager_config):
    """
    Level 1 pass manager: light optimization by simple adjacent gate collapsing

    This pass manager applies the user-given initial layout. If none is given, and a trivial
    layout (i-th virtual -> i-th physical) makes the circuit fit the coupling map, that is used.
    Otherwise, the circuit is mapped to the most densely connected coupling subgraph, and swaps
    are inserted to map. Any unused physical qubit is allocated as ancilla space.
    The pass manager then unrolls the circuit to the desired basis, and transforms the
    circuit to match the coupling map. Finally, optimizations in the form of adjacent
    gate collapse and redundant reset removal are performed.
    Note: in simulators where coupling_map=None, only the unrolling and optimization
    stages are done.

    Args:
        pass_manager_config (PassManagerConfig)

    Returns:
        PassManager: a level 1 pass manager.
    """
    basis_gates = pass_manager_config.basis_gates
    coupling_map = pass_manager_config.coupling_map
    initial_layout = pass_manager_config.initial_layout
    seed_transpiler = pass_manager_config.seed_transpiler
    backend_properties = pass_manager_config.backend_properties

    # 1. Use trivial layout if no layout given
    _set_initial_layout = SetLayout(initial_layout)

    def _choose_layout_condition(property_set):
        return not property_set['layout']

    # 2. Use a better layout on densely connected qubits, if circuit needs swaps
    def _not_perfect_yet(property_set):
        return property_set['trivial_layout_score'] is not None and \
               property_set['trivial_layout_score'] != 0

    # 3. Extend dag/layout with ancillas using the full coupling map
    _embed = [
        FullAncillaAllocation(coupling_map),
        EnlargeWithAncilla(),
        ApplyLayout()
    ]

    # 4. Unroll to the basis
    _unroll = Unroller(basis_gates)

    # 5. Swap to fit the coupling map
    _swap_check = CheckMap(coupling_map)

    def _swap_condition(property_set):
        return not property_set['is_swap_mapped']

    _swap = [
        BarrierBeforeFinalMeasurements(),
        Unroll3qOrMore(),
        StochasticSwap(coupling_map, trials=20, seed=seed_transpiler),
        Decompose(SwapGate)
    ]

    # 6. Fix any bad CX directions
    _direction_check = [CheckCXDirection(coupling_map)]

    def _direction_condition(property_set):
        return not property_set['is_direction_mapped']

    _direction = [CXDirection(coupling_map)]

    # 7. Remove zero-state reset
    _reset = RemoveResetInZeroState()

    # 8. Merge 1q rotations and cancel CNOT gates iteratively until no more change in depth
    _depth_check = [Depth(), FixedPoint('depth')]

    def _opt_control(property_set):
        return not property_set['depth_fixed_point']

    _opt = [Optimize1qGates(), CXCancellation()]

    pm1 = PassManager()
    if coupling_map:
        pm1.append(_set_initial_layout)
        pm1.append([
            TrivialLayout(coupling_map),
            Layout2qDistance(coupling_map,
                             property_name='trivial_layout_score')
        ],
                   condition=_choose_layout_condition)
        pm1.append(DenseLayout(coupling_map, backend_properties),
                   condition=_not_perfect_yet)
        pm1.append(_embed)
    pm1.append(_unroll)
    if coupling_map:
        pm1.append(_swap_check)
        pm1.append(_swap, condition=_swap_condition)
        if not coupling_map.is_symmetric:
            pm1.append(_direction_check)
            pm1.append(_direction, condition=_direction_condition)
    pm1.append(_reset)
    pm1.append(_depth_check + _opt, do_while=_opt_control)

    return pm1
backend_device = IBMQ.get_backend('ibmqx4')

# 0. build circuit
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit
q = QuantumRegister(2)
c = ClassicalRegister(2)
circ = QuantumCircuit(q, c)
circ.cx(q[0], q[1])
circ.cx(q[0], q[1])
circ.cx(q[0], q[1])
circ.cx(q[0], q[1])
circ.measure(q, c)

# draw circuit
print("orginal circuit")
print(circ.draw())

# 1. standard compile -- standard qiskit passes, when no PassManager given
from qiskit import transpiler
circuit1 = transpiler.transpile(circ, backend_device)
print("circuit after standard pass manager")
print(circuit1.draw())

# 2. custom compile -- customize PassManager to run specific circuit transformations
from qiskit.transpiler.passes import CXCancellation
pm = transpiler.PassManager()
pm.append(CXCancellation())
circuit2 = transpiler.transpile(circ, backend_device, pass_manager=pm)
print("circuit after custom pass manager")
print(circuit2.draw())
Example #18
0
def level_1_pass_manager(
        pass_manager_config: PassManagerConfig) -> PassManager:
    """Level 1 pass manager: light optimization by simple adjacent gate collapsing.

    This pass manager applies the user-given initial layout. If none is given,
    and a trivial layout (i-th virtual -> i-th physical) makes the circuit fit
    the coupling map, that is used.
    Otherwise, the circuit is mapped to the most densely connected coupling subgraph,
    and swaps are inserted to map. Any unused physical qubit is allocated as ancilla space.
    The pass manager then unrolls the circuit to the desired basis, and transforms the
    circuit to match the coupling map. Finally, optimizations in the form of adjacent
    gate collapse and redundant reset removal are performed.

    Note:
        In simulators where ``coupling_map=None``, only the unrolling and
        optimization stages are done.

    Args:
        pass_manager_config: configuration of the pass manager.

    Returns:
        a level 1 pass manager.

    Raises:
        TranspilerError: if the passmanager config is invalid.
    """
    basis_gates = pass_manager_config.basis_gates
    inst_map = pass_manager_config.inst_map
    coupling_map = pass_manager_config.coupling_map
    initial_layout = pass_manager_config.initial_layout
    layout_method = pass_manager_config.layout_method or "dense"
    routing_method = pass_manager_config.routing_method or "stochastic"
    translation_method = pass_manager_config.translation_method or "translator"
    scheduling_method = pass_manager_config.scheduling_method
    instruction_durations = pass_manager_config.instruction_durations
    seed_transpiler = pass_manager_config.seed_transpiler
    backend_properties = pass_manager_config.backend_properties
    approximation_degree = pass_manager_config.approximation_degree
    unitary_synthesis_method = pass_manager_config.unitary_synthesis_method
    unitary_synthesis_plugin_config = pass_manager_config.unitary_synthesis_plugin_config
    timing_constraints = pass_manager_config.timing_constraints or TimingConstraints(
    )
    target = pass_manager_config.target

    # 1. Use trivial layout if no layout given
    _given_layout = SetLayout(initial_layout)

    _choose_layout_and_score = [
        TrivialLayout(coupling_map),
        Layout2qDistance(coupling_map, property_name="trivial_layout_score"),
    ]

    def _choose_layout_condition(property_set):
        return not property_set["layout"]

    # 2. Decompose so only 1-qubit and 2-qubit gates remain
    _unroll3q = [
        # Use unitary synthesis for basis aware decomposition of UnitaryGates
        UnitarySynthesis(
            basis_gates,
            approximation_degree=approximation_degree,
            method=unitary_synthesis_method,
            min_qubits=3,
            plugin_config=unitary_synthesis_plugin_config,
        ),
        Unroll3qOrMore(),
    ]

    # 3. Use a better layout on densely connected qubits, if circuit needs swaps
    if layout_method == "trivial":
        _improve_layout = TrivialLayout(coupling_map)
    elif layout_method == "dense":
        _improve_layout = DenseLayout(coupling_map, backend_properties)
    elif layout_method == "noise_adaptive":
        _improve_layout = NoiseAdaptiveLayout(backend_properties)
    elif layout_method == "sabre":
        _improve_layout = SabreLayout(coupling_map,
                                      max_iterations=2,
                                      seed=seed_transpiler)
    else:
        raise TranspilerError("Invalid layout method %s." % layout_method)

    def _not_perfect_yet(property_set):
        return (property_set["trivial_layout_score"] is not None
                and property_set["trivial_layout_score"] != 0)

    # 4. Extend dag/layout with ancillas using the full coupling map
    _embed = [
        FullAncillaAllocation(coupling_map),
        EnlargeWithAncilla(),
        ApplyLayout()
    ]

    # 5. Swap to fit the coupling map
    _swap_check = CheckMap(coupling_map)

    def _swap_condition(property_set):
        return not property_set["is_swap_mapped"]

    _swap = [BarrierBeforeFinalMeasurements()]
    if routing_method == "basic":
        _swap += [BasicSwap(coupling_map)]
    elif routing_method == "stochastic":
        _swap += [
            StochasticSwap(coupling_map, trials=20, seed=seed_transpiler)
        ]
    elif routing_method == "lookahead":
        _swap += [LookaheadSwap(coupling_map, search_depth=4, search_width=4)]
    elif routing_method == "sabre":
        _swap += [
            SabreSwap(coupling_map,
                      heuristic="lookahead",
                      seed=seed_transpiler)
        ]
    elif routing_method == "none":
        _swap += [
            Error(
                msg=
                ("No routing method selected, but circuit is not routed to device. "
                 "CheckMap Error: {check_map_msg}"),
                action="raise",
            )
        ]
    else:
        raise TranspilerError("Invalid routing method %s." % routing_method)

    # 6. Unroll to the basis
    if translation_method == "unroller":
        _unroll = [Unroller(basis_gates)]
    elif translation_method == "translator":
        from qiskit.circuit.equivalence_library import SessionEquivalenceLibrary as sel

        _unroll = [
            # Use unitary synthesis for basis aware decomposition of UnitaryGates before
            # custom unrolling
            UnitarySynthesis(
                basis_gates,
                approximation_degree=approximation_degree,
                coupling_map=coupling_map,
                method=unitary_synthesis_method,
                backend_props=backend_properties,
                plugin_config=unitary_synthesis_plugin_config,
            ),
            UnrollCustomDefinitions(sel, basis_gates),
            BasisTranslator(sel, basis_gates, target),
        ]
    elif translation_method == "synthesis":
        _unroll = [
            # Use unitary synthesis for basis aware decomposition of UnitaryGates before
            # collection
            UnitarySynthesis(
                basis_gates,
                approximation_degree=approximation_degree,
                coupling_map=coupling_map,
                method=unitary_synthesis_method,
                backend_props=backend_properties,
                min_qubits=3,
            ),
            Unroll3qOrMore(),
            Collect2qBlocks(),
            ConsolidateBlocks(basis_gates=basis_gates),
            UnitarySynthesis(
                basis_gates,
                approximation_degree=approximation_degree,
                coupling_map=coupling_map,
                method=unitary_synthesis_method,
                backend_props=backend_properties,
                plugin_config=unitary_synthesis_plugin_config,
            ),
        ]
    else:
        raise TranspilerError("Invalid translation method %s." %
                              translation_method)

    # 7. Fix any bad CX directions
    _direction_check = [CheckGateDirection(coupling_map, target)]

    def _direction_condition(property_set):
        return not property_set["is_direction_mapped"]

    _direction = [GateDirection(coupling_map, target)]

    # 8. Remove zero-state reset
    _reset = RemoveResetInZeroState()

    # 9. Merge 1q rotations and cancel CNOT gates iteratively until no more change in depth
    _depth_check = [Depth(), FixedPoint("depth")]

    def _opt_control(property_set):
        return not property_set["depth_fixed_point"]

    _opt = [Optimize1qGatesDecomposition(basis_gates), CXCancellation()]

    # 10. Unify all durations (either SI, or convert to dt if known)
    # Schedule the circuit only when scheduling_method is supplied
    _time_unit_setup = [ContainsInstruction("delay")]
    _time_unit_conversion = [TimeUnitConversion(instruction_durations)]

    def _contains_delay(property_set):
        return property_set["contains_delay"]

    _scheduling = []
    if scheduling_method:
        _scheduling += _time_unit_conversion
        if scheduling_method in {"alap", "as_late_as_possible"}:
            _scheduling += [ALAPSchedule(instruction_durations)]
        elif scheduling_method in {"asap", "as_soon_as_possible"}:
            _scheduling += [ASAPSchedule(instruction_durations)]
        else:
            raise TranspilerError("Invalid scheduling method %s." %
                                  scheduling_method)

    # 11. Call measure alignment. Should come after scheduling.
    if (timing_constraints.granularity != 1
            or timing_constraints.min_length != 1
            or timing_constraints.acquire_alignment != 1):
        _alignments = [
            ValidatePulseGates(granularity=timing_constraints.granularity,
                               min_length=timing_constraints.min_length),
            AlignMeasures(alignment=timing_constraints.acquire_alignment),
        ]
    else:
        _alignments = []

    # Build pass manager
    pm1 = PassManager()
    if coupling_map or initial_layout:
        pm1.append(_given_layout)
        pm1.append(_unroll3q)
        pm1.append(_choose_layout_and_score,
                   condition=_choose_layout_condition)
        pm1.append(_improve_layout, condition=_not_perfect_yet)
        pm1.append(_embed)
        pm1.append(_swap_check)
        pm1.append(_swap, condition=_swap_condition)
    pm1.append(_unroll)
    if (coupling_map and not coupling_map.is_symmetric) or (
            target is not None
            and target.get_non_global_operation_names(strict_direction=True)):
        pm1.append(_direction_check)
        pm1.append(_direction, condition=_direction_condition)
    pm1.append(_reset)
    pm1.append(_depth_check + _opt + _unroll, do_while=_opt_control)
    if inst_map and inst_map.has_custom_gate():
        pm1.append(PulseGates(inst_map=inst_map))
    if scheduling_method:
        pm1.append(_scheduling)
    elif instruction_durations:
        pm1.append(_time_unit_setup)
        pm1.append(_time_unit_conversion, condition=_contains_delay)
    pm1.append(_alignments)

    return pm1
Example #19
0
def level_1_pass_manager(
        pass_manager_config: PassManagerConfig) -> PassManager:
    """Level 1 pass manager: light optimization by simple adjacent gate collapsing.

    This pass manager applies the user-given initial layout. If none is given,
    and a trivial layout (i-th virtual -> i-th physical) makes the circuit fit
    the coupling map, that is used.
    Otherwise, the circuit is mapped to the most densely connected coupling subgraph,
    and swaps are inserted to map. Any unused physical qubit is allocated as ancilla space.
    The pass manager then unrolls the circuit to the desired basis, and transforms the
    circuit to match the coupling map. Finally, optimizations in the form of adjacent
    gate collapse and redundant reset removal are performed.

    Note:
        In simulators where ``coupling_map=None``, only the unrolling and
        optimization stages are done.

    Args:
        pass_manager_config: configuration of the pass manager.

    Returns:
        a level 1 pass manager.

    Raises:
        TranspilerError: if the passmanager config is invalid.
    """
    basis_gates = pass_manager_config.basis_gates
    coupling_map = pass_manager_config.coupling_map
    initial_layout = pass_manager_config.initial_layout
    layout_method = pass_manager_config.layout_method or 'dense'
    routing_method = pass_manager_config.routing_method or 'stochastic'
    translation_method = pass_manager_config.translation_method or 'translator'
    scheduling_method = pass_manager_config.scheduling_method
    instruction_durations = pass_manager_config.instruction_durations
    seed_transpiler = pass_manager_config.seed_transpiler
    backend_properties = pass_manager_config.backend_properties
    approximation_degree = pass_manager_config.approximation_degree

    # 1. Use trivial layout if no layout given
    _given_layout = SetLayout(initial_layout)

    _choose_layout_and_score = [
        TrivialLayout(coupling_map),
        Layout2qDistance(coupling_map, property_name='trivial_layout_score')
    ]

    def _choose_layout_condition(property_set):
        return not property_set['layout']

    # 2. Use a better layout on densely connected qubits, if circuit needs swaps
    if layout_method == 'trivial':
        _improve_layout = TrivialLayout(coupling_map)
    elif layout_method == 'dense':
        _improve_layout = DenseLayout(coupling_map, backend_properties)
    elif layout_method == 'noise_adaptive':
        _improve_layout = NoiseAdaptiveLayout(backend_properties)
    elif layout_method == 'sabre':
        _improve_layout = SabreLayout(coupling_map,
                                      max_iterations=2,
                                      seed=seed_transpiler)
    else:
        raise TranspilerError("Invalid layout method %s." % layout_method)

    def _not_perfect_yet(property_set):
        return property_set['trivial_layout_score'] is not None and \
               property_set['trivial_layout_score'] != 0

    # 3. Extend dag/layout with ancillas using the full coupling map
    _embed = [
        FullAncillaAllocation(coupling_map),
        EnlargeWithAncilla(),
        ApplyLayout()
    ]

    # 4. Decompose so only 1-qubit and 2-qubit gates remain
    _unroll3q = Unroll3qOrMore()

    # 5. Swap to fit the coupling map
    _swap_check = CheckMap(coupling_map)

    def _swap_condition(property_set):
        return not property_set['is_swap_mapped']

    _swap = [BarrierBeforeFinalMeasurements()]
    if routing_method == 'basic':
        _swap += [BasicSwap(coupling_map)]
    elif routing_method == 'stochastic':
        _swap += [
            StochasticSwap(coupling_map, trials=20, seed=seed_transpiler)
        ]
    elif routing_method == 'lookahead':
        _swap += [LookaheadSwap(coupling_map, search_depth=4, search_width=4)]
    elif routing_method == 'sabre':
        _swap += [
            SabreSwap(coupling_map,
                      heuristic='lookahead',
                      seed=seed_transpiler)
        ]
    elif routing_method == 'none':
        _swap += [
            Error(
                msg=
                'No routing method selected, but circuit is not routed to device. '
                'CheckMap Error: {check_map_msg}',
                action='raise')
        ]
    else:
        raise TranspilerError("Invalid routing method %s." % routing_method)

    # 6. Unroll to the basis
    if translation_method == 'unroller':
        _unroll = [Unroller(basis_gates)]
    elif translation_method == 'translator':
        from qiskit.circuit.equivalence_library import SessionEquivalenceLibrary as sel
        _unroll = [
            UnrollCustomDefinitions(sel, basis_gates),
            BasisTranslator(sel, basis_gates)
        ]
    elif translation_method == 'synthesis':
        _unroll = [
            Unroll3qOrMore(),
            Collect2qBlocks(),
            ConsolidateBlocks(basis_gates=basis_gates),
            UnitarySynthesis(basis_gates,
                             approximation_degree=approximation_degree),
        ]
    else:
        raise TranspilerError("Invalid translation method %s." %
                              translation_method)

    # 7. Fix any bad CX directions
    _direction_check = [CheckGateDirection(coupling_map)]

    def _direction_condition(property_set):
        return not property_set['is_direction_mapped']

    _direction = [GateDirection(coupling_map)]

    # 8. Remove zero-state reset
    _reset = RemoveResetInZeroState()

    # 9. Merge 1q rotations and cancel CNOT gates iteratively until no more change in depth
    _depth_check = [Depth(), FixedPoint('depth')]

    def _opt_control(property_set):
        return not property_set['depth_fixed_point']

    _opt = [Optimize1qGatesDecomposition(basis_gates), CXCancellation()]

    # 10. Unify all durations (either SI, or convert to dt if known)
    # Schedule the circuit only when scheduling_method is supplied
    _scheduling = [TimeUnitConversion(instruction_durations)]
    if scheduling_method:
        if scheduling_method in {'alap', 'as_late_as_possible'}:
            _scheduling += [ALAPSchedule(instruction_durations)]
        elif scheduling_method in {'asap', 'as_soon_as_possible'}:
            _scheduling += [ASAPSchedule(instruction_durations)]
        else:
            raise TranspilerError("Invalid scheduling method %s." %
                                  scheduling_method)

    # Build pass manager
    pm1 = PassManager()
    if coupling_map or initial_layout:
        pm1.append(_given_layout)
        pm1.append(_choose_layout_and_score,
                   condition=_choose_layout_condition)
        pm1.append(_improve_layout, condition=_not_perfect_yet)
        pm1.append(_embed)
        pm1.append(_unroll3q)
        pm1.append(_swap_check)
        pm1.append(_swap, condition=_swap_condition)
    pm1.append(_unroll)
    if coupling_map and not coupling_map.is_symmetric:
        pm1.append(_direction_check)
        pm1.append(_direction, condition=_direction_condition)
        pm1.append(_unroll)
    pm1.append(_reset)
    pm1.append(_depth_check + _opt, do_while=_opt_control)
    pm1.append(_scheduling)

    return pm1
Example #20
0
def level_1_pass_manager(pass_manager_config: PassManagerConfig) -> StagedPassManager:
    """Level 1 pass manager: light optimization by simple adjacent gate collapsing.

    This pass manager applies the user-given initial layout. If none is given,
    and a trivial layout (i-th virtual -> i-th physical) makes the circuit fit
    the coupling map, that is used.
    Otherwise, the circuit is mapped to the most densely connected coupling subgraph,
    and swaps are inserted to map. Any unused physical qubit is allocated as ancilla space.
    The pass manager then unrolls the circuit to the desired basis, and transforms the
    circuit to match the coupling map. Finally, optimizations in the form of adjacent
    gate collapse and redundant reset removal are performed.

    Args:
        pass_manager_config: configuration of the pass manager.

    Returns:
        a level 1 pass manager.

    Raises:
        TranspilerError: if the passmanager config is invalid.
    """
    basis_gates = pass_manager_config.basis_gates
    inst_map = pass_manager_config.inst_map
    coupling_map = pass_manager_config.coupling_map
    initial_layout = pass_manager_config.initial_layout
    layout_method = pass_manager_config.layout_method or "dense"
    routing_method = pass_manager_config.routing_method or "stochastic"
    translation_method = pass_manager_config.translation_method or "translator"
    scheduling_method = pass_manager_config.scheduling_method
    instruction_durations = pass_manager_config.instruction_durations
    seed_transpiler = pass_manager_config.seed_transpiler
    backend_properties = pass_manager_config.backend_properties
    approximation_degree = pass_manager_config.approximation_degree
    unitary_synthesis_method = pass_manager_config.unitary_synthesis_method
    unitary_synthesis_plugin_config = pass_manager_config.unitary_synthesis_plugin_config
    timing_constraints = pass_manager_config.timing_constraints or TimingConstraints()
    target = pass_manager_config.target

    # Use trivial layout if no layout given
    _given_layout = SetLayout(initial_layout)

    def _choose_layout_condition(property_set):
        return not property_set["layout"]

    def _trivial_not_perfect(property_set):
        # Verify that a trivial layout is perfect. If trivial_layout_score > 0
        # the layout is not perfect. The layout is unconditionally set by trivial
        # layout so we need to clear it before contuing.
        if (
            property_set["trivial_layout_score"] is not None
            and property_set["trivial_layout_score"] != 0
        ):
            return True
        return False

    # Use a better layout on densely connected qubits, if circuit needs swaps
    def _vf2_match_not_found(property_set):
        # If a layout hasn't been set by the time we run vf2 layout we need to
        # run layout
        if property_set["layout"] is None:
            return True
        # if VF2 layout stopped for any reason other than solution found we need
        # to run layout since VF2 didn't converge.
        if (
            property_set["VF2Layout_stop_reason"] is not None
            and property_set["VF2Layout_stop_reason"] is not VF2LayoutStopReason.SOLUTION_FOUND
        ):
            return True
        return False

    _choose_layout_0 = (
        []
        if pass_manager_config.layout_method
        else [
            TrivialLayout(coupling_map),
            Layout2qDistance(coupling_map, property_name="trivial_layout_score"),
        ]
    )

    _choose_layout_1 = (
        []
        if pass_manager_config.layout_method
        else VF2Layout(
            coupling_map,
            seed=seed_transpiler,
            call_limit=int(5e4),  # Set call limit to ~100ms with retworkx 0.10.2
            properties=backend_properties,
            target=target,
        )
    )

    if layout_method == "trivial":
        _improve_layout = TrivialLayout(coupling_map)
    elif layout_method == "dense":
        _improve_layout = DenseLayout(coupling_map, backend_properties, target=target)
    elif layout_method == "noise_adaptive":
        _improve_layout = NoiseAdaptiveLayout(backend_properties)
    elif layout_method == "sabre":
        _improve_layout = SabreLayout(coupling_map, max_iterations=2, seed=seed_transpiler)
    else:
        raise TranspilerError("Invalid layout method %s." % layout_method)

    toqm_pass = False
    if routing_method == "basic":
        routing_pass = BasicSwap(coupling_map)
    elif routing_method == "stochastic":
        routing_pass = StochasticSwap(coupling_map, trials=20, seed=seed_transpiler)
    elif routing_method == "lookahead":
        routing_pass = LookaheadSwap(coupling_map, search_depth=4, search_width=4)
    elif routing_method == "sabre":
        routing_pass = SabreSwap(coupling_map, heuristic="lookahead", seed=seed_transpiler)
    elif routing_method == "toqm":
        HAS_TOQM.require_now("TOQM-based routing")
        from qiskit_toqm import ToqmSwap, ToqmStrategyO1, latencies_from_target

        if initial_layout:
            raise TranspilerError("Initial layouts are not supported with TOQM-based routing.")

        toqm_pass = True
        # Note: BarrierBeforeFinalMeasurements is skipped intentionally since ToqmSwap
        #       does not yet support barriers.
        routing_pass = ToqmSwap(
            coupling_map,
            strategy=ToqmStrategyO1(
                latencies_from_target(
                    coupling_map, instruction_durations, basis_gates, backend_properties, target
                )
            ),
        )
    elif routing_method == "none":
        routing_pass = Error(
            msg="No routing method selected, but circuit is not routed to device. "
            "CheckMap Error: {check_map_msg}",
            action="raise",
        )
    else:
        raise TranspilerError("Invalid routing method %s." % routing_method)

    # Build optimization loop: merge 1q rotations and cancel CNOT gates iteratively
    # until no more change in depth
    _depth_check = [Depth(), FixedPoint("depth")]
    _size_check = [Size(), FixedPoint("size")]

    def _opt_control(property_set):
        return (not property_set["depth_fixed_point"]) or (not property_set["size_fixed_point"])

    _opt = [Optimize1qGatesDecomposition(basis_gates), CXCancellation()]

    unroll_3q = None
    # Build full pass manager
    if coupling_map or initial_layout:
        unroll_3q = common.generate_unroll_3q(
            target,
            basis_gates,
            approximation_degree,
            unitary_synthesis_method,
            unitary_synthesis_plugin_config,
        )
        layout = PassManager()
        layout.append(_given_layout)
        layout.append(_choose_layout_0, condition=_choose_layout_condition)
        layout.append(_choose_layout_1, condition=_trivial_not_perfect)
        layout.append(_improve_layout, condition=_vf2_match_not_found)
        layout += common.generate_embed_passmanager(coupling_map)
        vf2_call_limit = None
        if pass_manager_config.layout_method is None and pass_manager_config.initial_layout is None:
            vf2_call_limit = int(5e4)  # Set call limit to ~100ms with retworkx 0.10.2
        routing = common.generate_routing_passmanager(
            routing_pass,
            target,
            coupling_map,
            vf2_call_limit=vf2_call_limit,
            backend_properties=backend_properties,
            seed_transpiler=seed_transpiler,
            check_trivial=True,
            use_barrier_before_measurement=not toqm_pass,
        )
    else:
        layout = None
        routing = None
    translation = common.generate_translation_passmanager(
        target,
        basis_gates,
        translation_method,
        approximation_degree,
        coupling_map,
        backend_properties,
        unitary_synthesis_method,
        unitary_synthesis_plugin_config,
    )
    pre_routing = None
    if toqm_pass:
        pre_routing = translation

    if (coupling_map and not coupling_map.is_symmetric) or (
        target is not None and target.get_non_global_operation_names(strict_direction=True)
    ):
        pre_optimization = common.generate_pre_op_passmanager(target, coupling_map, True)
    else:
        pre_optimization = common.generate_pre_op_passmanager(remove_reset_in_zero=True)
    optimization = PassManager()
    unroll = [pass_ for x in translation.passes() for pass_ in x["passes"]]
    optimization.append(_depth_check + _size_check)
    opt_loop = _opt + unroll + _depth_check + _size_check
    optimization.append(opt_loop, do_while=_opt_control)
    sched = common.generate_scheduling(
        instruction_durations, scheduling_method, timing_constraints, inst_map
    )

    return StagedPassManager(
        init=unroll_3q,
        layout=layout,
        pre_routing=pre_routing,
        routing=routing,
        translation=translation,
        pre_optimization=pre_optimization,
        optimization=optimization,
        scheduling=sched,
    )
Example #21
0
def level_1_pass_manager(
        pass_manager_config: PassManagerConfig) -> PassManager:
    """Level 1 pass manager: light optimization by simple adjacent gate collapsing.

    This pass manager applies the user-given initial layout. If none is given,
    and a trivial layout (i-th virtual -> i-th physical) makes the circuit fit
    the coupling map, that is used.
    Otherwise, the circuit is mapped to the most densely connected coupling subgraph,
    and swaps are inserted to map. Any unused physical qubit is allocated as ancilla space.
    The pass manager then unrolls the circuit to the desired basis, and transforms the
    circuit to match the coupling map. Finally, optimizations in the form of adjacent
    gate collapse and redundant reset removal are performed.

    Note:
        In simulators where ``coupling_map=None``, only the unrolling and
        optimization stages are done.

    Args:
        pass_manager_config: configuration of the pass manager.

    Returns:
        a level 1 pass manager.

    Raises:
        TranspilerError: if the passmanager config is invalid.
    """
    basis_gates = pass_manager_config.basis_gates
    inst_map = pass_manager_config.inst_map
    coupling_map = pass_manager_config.coupling_map
    initial_layout = pass_manager_config.initial_layout
    layout_method = pass_manager_config.layout_method or "dense"
    routing_method = pass_manager_config.routing_method or "stochastic"
    translation_method = pass_manager_config.translation_method or "translator"
    scheduling_method = pass_manager_config.scheduling_method
    instruction_durations = pass_manager_config.instruction_durations
    seed_transpiler = pass_manager_config.seed_transpiler
    backend_properties = pass_manager_config.backend_properties
    approximation_degree = pass_manager_config.approximation_degree
    unitary_synthesis_method = pass_manager_config.unitary_synthesis_method
    unitary_synthesis_plugin_config = pass_manager_config.unitary_synthesis_plugin_config
    timing_constraints = pass_manager_config.timing_constraints or TimingConstraints(
    )
    target = pass_manager_config.target

    # 1. Use trivial layout if no layout given if that isn't perfect use vf2 layout
    _given_layout = SetLayout(initial_layout)

    def _choose_layout_condition(property_set):
        return not property_set["layout"]

    def _trivial_not_perfect(property_set):
        # Verify that a trivial layout is perfect. If trivial_layout_score > 0
        # the layout is not perfect. The layout is unconditionally set by trivial
        # layout so we need to clear it before contuing.
        if (property_set["trivial_layout_score"] is not None
                and property_set["trivial_layout_score"] != 0):
            return True
        return False

    def _vf2_match_not_found(property_set):
        # If a layout hasn't been set by the time we run vf2 layout we need to
        # run layout
        if property_set["layout"] is None:
            return True
        # if VF2 layout stopped for any reason other than solution found we need
        # to run layout since VF2 didn't converge.
        if (property_set["VF2Layout_stop_reason"] is not None
                and property_set["VF2Layout_stop_reason"]
                is not VF2LayoutStopReason.SOLUTION_FOUND):
            return True
        return False

    _choose_layout_0 = ([] if pass_manager_config.layout_method else [
        TrivialLayout(coupling_map),
        Layout2qDistance(coupling_map, property_name="trivial_layout_score"),
    ])

    _choose_layout_1 = ([] if pass_manager_config.layout_method else VF2Layout(
        coupling_map,
        seed=seed_transpiler,
        call_limit=int(5e4),  # Set call limit to ~100ms with retworkx 0.10.2
        time_limit=0.1,
        properties=backend_properties,
        target=target,
    ))

    # 2. Decompose so only 1-qubit and 2-qubit gates remain
    _unroll3q = [
        # Use unitary synthesis for basis aware decomposition of UnitaryGates
        UnitarySynthesis(
            basis_gates,
            approximation_degree=approximation_degree,
            method=unitary_synthesis_method,
            min_qubits=3,
            plugin_config=unitary_synthesis_plugin_config,
            target=target,
        ),
        Unroll3qOrMore(),
    ]

    # 3. Use a better layout on densely connected qubits, if circuit needs swaps
    if layout_method == "trivial":
        _improve_layout = TrivialLayout(coupling_map)
    elif layout_method == "dense":
        _improve_layout = DenseLayout(coupling_map,
                                      backend_properties,
                                      target=target)
    elif layout_method == "noise_adaptive":
        _improve_layout = NoiseAdaptiveLayout(backend_properties)
    elif layout_method == "sabre":
        _improve_layout = SabreLayout(coupling_map,
                                      max_iterations=2,
                                      seed=seed_transpiler)
    else:
        raise TranspilerError("Invalid layout method %s." % layout_method)

    # 4. Extend dag/layout with ancillas using the full coupling map
    _embed = [
        FullAncillaAllocation(coupling_map),
        EnlargeWithAncilla(),
        ApplyLayout()
    ]

    # 5. Swap to fit the coupling map
    _swap_check = CheckMap(coupling_map)

    def _swap_condition(property_set):
        return not property_set["is_swap_mapped"]

    _swap = [BarrierBeforeFinalMeasurements()]
    if routing_method == "basic":
        _swap += [BasicSwap(coupling_map)]
    elif routing_method == "stochastic":
        _swap += [
            StochasticSwap(coupling_map, trials=20, seed=seed_transpiler)
        ]
    elif routing_method == "lookahead":
        _swap += [LookaheadSwap(coupling_map, search_depth=4, search_width=4)]
    elif routing_method == "sabre":
        _swap += [
            SabreSwap(coupling_map,
                      heuristic="lookahead",
                      seed=seed_transpiler)
        ]
    elif routing_method == "none":
        _swap += [
            Error(
                msg=
                ("No routing method selected, but circuit is not routed to device. "
                 "CheckMap Error: {check_map_msg}"),
                action="raise",
            )
        ]
    else:
        raise TranspilerError("Invalid routing method %s." % routing_method)

    # 6. Unroll to the basis
    if translation_method == "unroller":
        _unroll = [Unroller(basis_gates)]
    elif translation_method == "translator":
        from qiskit.circuit.equivalence_library import SessionEquivalenceLibrary as sel

        _unroll = [
            # Use unitary synthesis for basis aware decomposition of UnitaryGates before
            # custom unrolling
            UnitarySynthesis(
                basis_gates,
                approximation_degree=approximation_degree,
                coupling_map=coupling_map,
                method=unitary_synthesis_method,
                backend_props=backend_properties,
                plugin_config=unitary_synthesis_plugin_config,
                target=target,
            ),
            UnrollCustomDefinitions(sel, basis_gates),
            BasisTranslator(sel, basis_gates, target),
        ]
    elif translation_method == "synthesis":
        _unroll = [
            # Use unitary synthesis for basis aware decomposition of UnitaryGates before
            # collection
            UnitarySynthesis(
                basis_gates,
                approximation_degree=approximation_degree,
                coupling_map=coupling_map,
                method=unitary_synthesis_method,
                backend_props=backend_properties,
                min_qubits=3,
                target=target,
            ),
            Unroll3qOrMore(),
            Collect2qBlocks(),
            ConsolidateBlocks(basis_gates=basis_gates, target=target),
            UnitarySynthesis(
                basis_gates,
                approximation_degree=approximation_degree,
                coupling_map=coupling_map,
                method=unitary_synthesis_method,
                backend_props=backend_properties,
                plugin_config=unitary_synthesis_plugin_config,
                target=target,
            ),
        ]
    else:
        raise TranspilerError("Invalid translation method %s." %
                              translation_method)

    # 7. Fix any bad CX directions
    _direction_check = [CheckGateDirection(coupling_map, target)]

    def _direction_condition(property_set):
        return not property_set["is_direction_mapped"]

    _direction = [GateDirection(coupling_map, target)]

    # 8. Remove zero-state reset
    _reset = RemoveResetInZeroState()

    # 9. Merge 1q rotations and cancel CNOT gates iteratively until no more change in depth
    # or size of circuit
    _depth_check = [Depth(), FixedPoint("depth")]
    _size_check = [Size(), FixedPoint("size")]

    def _opt_control(property_set):
        return (not property_set["depth_fixed_point"]) or (
            not property_set["size_fixed_point"])

    _opt = [Optimize1qGatesDecomposition(basis_gates), CXCancellation()]

    # Build pass manager
    pm1 = PassManager()
    if coupling_map or initial_layout:
        pm1.append(_given_layout)
        pm1.append(_unroll3q)
        pm1.append(_choose_layout_0, condition=_choose_layout_condition)
        pm1.append(_choose_layout_1, condition=_trivial_not_perfect)
        pm1.append(_improve_layout, condition=_vf2_match_not_found)
        pm1.append(_embed)
        pm1.append(_swap_check)
        pm1.append(_swap, condition=_swap_condition)
    pm1.append(_unroll)
    if (coupling_map and not coupling_map.is_symmetric) or (
            target is not None
            and target.get_non_global_operation_names(strict_direction=True)):
        pm1.append(_direction_check)
        pm1.append(_direction, condition=_direction_condition)
    pm1.append(_reset)
    pm1.append(_depth_check + _size_check)
    pm1.append(_opt + _unroll + _depth_check + _size_check,
               do_while=_opt_control)
    if inst_map and inst_map.has_custom_gate():
        pm1.append(PulseGates(inst_map=inst_map))

    # 10. Unify all durations (either SI, or convert to dt if known)
    # Schedule the circuit only when scheduling_method is supplied
    # Apply alignment analysis regardless of scheduling for delay validation.
    if scheduling_method:
        # Do scheduling after unit conversion.
        scheduler = {
            "alap": ALAPScheduleAnalysis,
            "as_late_as_possible": ALAPScheduleAnalysis,
            "asap": ASAPScheduleAnalysis,
            "as_soon_as_possible": ASAPScheduleAnalysis,
        }
        pm1.append(TimeUnitConversion(instruction_durations))
        try:
            pm1.append(scheduler[scheduling_method](instruction_durations))
        except KeyError as ex:
            raise TranspilerError("Invalid scheduling method %s." %
                                  scheduling_method) from ex
    elif instruction_durations:
        # No scheduling. But do unit conversion for delays.
        def _contains_delay(property_set):
            return property_set["contains_delay"]

        pm1.append(ContainsInstruction("delay"))
        pm1.append(TimeUnitConversion(instruction_durations),
                   condition=_contains_delay)
    if (timing_constraints.granularity != 1
            or timing_constraints.min_length != 1
            or timing_constraints.acquire_alignment != 1
            or timing_constraints.pulse_alignment != 1):
        # Run alignment analysis regardless of scheduling.

        def _require_alignment(property_set):
            return property_set["reschedule_required"]

        pm1.append(
            InstructionDurationCheck(
                acquire_alignment=timing_constraints.acquire_alignment,
                pulse_alignment=timing_constraints.pulse_alignment,
            ))
        pm1.append(
            ConstrainedReschedule(
                acquire_alignment=timing_constraints.acquire_alignment,
                pulse_alignment=timing_constraints.pulse_alignment,
            ),
            condition=_require_alignment,
        )
        pm1.append(
            ValidatePulseGates(
                granularity=timing_constraints.granularity,
                min_length=timing_constraints.min_length,
            ))
    if scheduling_method:
        # Call padding pass if circuit is scheduled
        pm1.append(PadDelay())

    return pm1
# 0. build circuit
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit
q = QuantumRegister(2)
c = ClassicalRegister(2)
circ = QuantumCircuit(q, c)
circ.cx(q[0], q[1])
circ.cx(q[0], q[1])
circ.cx(q[0], q[1])
circ.cx(q[0], q[1])
circ.measure(q, c)

# draw circuit
from qiskit.tools.visualization import plot_circuit
plot_circuit(circ)

# 1. standard compile -- standard qiskit passes, when no PassManager given
from qiskit import transpiler, load_qasm_string
qobj_standard = transpiler.compile(circ, backend_device)
compiled_standard = load_qasm_string(
    qobj_standard['circuits'][0]['compiled_circuit_qasm'])
plot_circuit(compiled_standard)

# 2. custom compile -- customize PassManager to run specific circuit transformations
from qiskit.transpiler.passes import CXCancellation
pm = transpiler.PassManager()
pm.add_pass(CXCancellation())
qobj_custom = transpiler.compile(circ, backend_device, pass_manager=pm)
compiled_custom = load_qasm_string(
    qobj_custom['circuits'][0]['compiled_circuit_qasm'])
plot_circuit(compiled_custom)
    def run(self, dag):
        """
        Run the CNOTCascadesTransform pass over a dag circuit.

        After the transformation, proceeds to check for possible one-qubit gates optimizations and
        CNOT cancellations, as subsequent CNOT nearest-neighbor sequences could create
        the opportunity for useful circuit simplifications.

        Args:
            dag (DAGCircuit): the dag circuit to be searched for CNOT cascades.

        Returns:
            new_dag (DAGCircuit): a new dag where all CNOT cascades have been transformed.
        """
        # prepare new dag
        new_dag = DAGCircuit()

        new_dag.name = dag.name
        self._num_qubits = dag.num_qubits()
        for q_reg in dag.qregs.values():
            new_dag.add_qreg(q_reg)
        for c_reg in dag.cregs.values():
            new_dag.add_creg(c_reg)

        i = 0
        for q_reg in dag.qregs.values():
            for q in q_reg:
                self._wires_to_id[q] = i
                self._id_to_wires[i] = q
                i += 1

        depth = new_dag.depth()
        while True:
            new_dag = Optimize1qGates().run(new_dag)
            new_dag = CXCancellation().run(new_dag)
            new_depth = new_dag.depth()
            if new_depth < depth:
                depth = new_depth
            else:
                break

        # get dag layers
        self._layers = [layer['graph'] for layer in dag.layers()]
        # this is the list of new layers for the nearest-neighbor CNOT sequences
        self._extra_layers = {l: [] for l in range(len(self._layers))}
        # loop through all layers
        for i, layer in enumerate(self._layers):
            if i != 0:
                # add nearest-neighbor CNOT sequences in the right layer
                for gate in self._extra_layers[i - 1]:
                    new_dag.apply_operation_back(*gate)

            # check all gates in the layer
            for gate in layer.op_nodes():
                temp = None
                # do not add gates that have been used in the transformation process
                if gate in self._skip:
                    continue
                # every cnot could be the starting point for a CNOT cascade
                elif gate.name == 'cx':
                    logger.debug('Check Cascade %s with qargs: %s\n' % (gate.name, gate.qargs))
                    # check for a CNOT cascade
                    temp = self.check_cascade(gate, i)
                    if temp is not None:
                        logger.info('Cascade Starts at %s with qargs: %s\n' % (gate.name, gate.qargs))
                        self._skip.extend(temp)
                    else:
                        logger.debug(
                            'Check Inverse Cascade at %s with qargs: %s\n' % (gate.name, gate.qargs))
                        # check for an inverted CNOT cascade
                        temp = self.check_inverse_cascade(gate, i)
                        if temp is not None:
                            logger.info(
                                'Inverse Cascade Starts at %s with qargs: %s\n' % (gate.name, gate.qargs))
                            self._skip.extend(temp)
                        else:
                            # apply the CNOT if no cascade was found
                            self._skip.append(gate)
                            logger.debug(
                                'Found Nothing at %s with qargs: %s\n' % (gate.name, gate.qargs))
                            new_dag.apply_operation_back(gate.op, gate.qargs, gate.cargs, gate.condition)
                else:
                    self._skip.append(gate)
                    new_dag.apply_operation_back(gate.op, gate.qargs, gate.cargs, gate.condition)
        logger.debug('Cascades found: %s' % str(self._extra_layers))

        # optimize dag after transformation
        depth = new_dag.depth()
        while True:
            new_dag = Optimize1qGates().run(new_dag)
            new_dag = CXCancellation().run(new_dag)
            new_depth = new_dag.depth()
            if new_depth < depth:
                depth = new_depth
            else:
                break
        return new_dag
Example #24
0
def level_1_pass_manager(
        pass_manager_config: PassManagerConfig) -> PassManager:
    """Level 1 pass manager: light optimization by simple adjacent gate collapsing.

    This pass manager applies the user-given initial layout. If none is given,
    and a trivial layout (i-th virtual -> i-th physical) makes the circuit fit
    the coupling map, that is used.
    Otherwise, the circuit is mapped to the most densely connected coupling subgraph,
    and swaps are inserted to map. Any unused physical qubit is allocated as ancilla space.
    The pass manager then unrolls the circuit to the desired basis, and transforms the
    circuit to match the coupling map. Finally, optimizations in the form of adjacent
    gate collapse and redundant reset removal are performed.

    Note:
        In simulators where ``coupling_map=None``, only the unrolling and
        optimization stages are done.

    Args:
        pass_manager_config: configuration of the pass manager.

    Returns:
        a level 1 pass manager.

    Raises:
        TranspilerError: if the passmanager config is invalid.
    """
    basis_gates = pass_manager_config.basis_gates
    coupling_map = pass_manager_config.coupling_map
    initial_layout = pass_manager_config.initial_layout
    layout_method = pass_manager_config.layout_method or 'dense'
    routing_method = pass_manager_config.routing_method or 'stochastic'
    seed_transpiler = pass_manager_config.seed_transpiler
    backend_properties = pass_manager_config.backend_properties

    # 1. Use trivial layout if no layout given
    _given_layout = SetLayout(initial_layout)

    _choose_layout_and_score = [
        TrivialLayout(coupling_map),
        Layout2qDistance(coupling_map, property_name='trivial_layout_score')
    ]

    def _choose_layout_condition(property_set):
        return not property_set['layout']

    # 2. Use a better layout on densely connected qubits, if circuit needs swaps
    if layout_method == 'trivial':
        _improve_layout = TrivialLayout(coupling_map)
    elif layout_method == 'dense':
        _improve_layout = DenseLayout(coupling_map, backend_properties)
    elif layout_method == 'noise_adaptive':
        _improve_layout = NoiseAdaptiveLayout(backend_properties)
    else:
        raise TranspilerError("Invalid layout method %s." % layout_method)

    def _not_perfect_yet(property_set):
        return property_set['trivial_layout_score'] is not None and \
               property_set['trivial_layout_score'] != 0

    # 3. Extend dag/layout with ancillas using the full coupling map
    _embed = [
        FullAncillaAllocation(coupling_map),
        EnlargeWithAncilla(),
        ApplyLayout()
    ]

    # 4. Decompose so only 1-qubit and 2-qubit gates remain
    _unroll3q = Unroll3qOrMore()

    # 5. Swap to fit the coupling map
    _swap_check = CheckMap(coupling_map)

    def _swap_condition(property_set):
        return not property_set['is_swap_mapped']

    _swap = [BarrierBeforeFinalMeasurements()]
    if routing_method == 'basic':
        _swap += [BasicSwap(coupling_map)]
    elif routing_method == 'stochastic':
        _swap += [
            StochasticSwap(coupling_map, trials=20, seed=seed_transpiler)
        ]
    elif routing_method == 'lookahead':
        _swap += [LookaheadSwap(coupling_map, search_depth=4, search_width=4)]
    else:
        raise TranspilerError("Invalid routing method %s." % routing_method)

    # 6. Unroll to the basis
    _unroll = Unroller(basis_gates)

    # 7. Fix any bad CX directions
    _direction_check = [CheckCXDirection(coupling_map)]

    def _direction_condition(property_set):
        return not property_set['is_direction_mapped']

    _direction = [CXDirection(coupling_map)]

    # 8. Remove zero-state reset
    _reset = RemoveResetInZeroState()

    # 9. Merge 1q rotations and cancel CNOT gates iteratively until no more change in depth
    _depth_check = [Depth(), FixedPoint('depth')]

    def _opt_control(property_set):
        return not property_set['depth_fixed_point']

    _opt = [Optimize1qGates(basis_gates), CXCancellation()]

    # Build pass manager
    pm1 = PassManager()
    if coupling_map:
        pm1.append(_given_layout)
        pm1.append(_choose_layout_and_score,
                   condition=_choose_layout_condition)
        pm1.append(_improve_layout, condition=_not_perfect_yet)
        pm1.append(_embed)
        pm1.append(_unroll3q)
        pm1.append(_swap_check)
        pm1.append(_swap, condition=_swap_condition)
    pm1.append(_unroll)
    if coupling_map and not coupling_map.is_symmetric:
        pm1.append(_direction_check)
        pm1.append(_direction, condition=_direction_condition)
    pm1.append(_reset)
    pm1.append(_depth_check + _opt, do_while=_opt_control)

    return pm1
    qiskit_circ = QuantumCircuit.from_qasm_str(c.to_qasm())
    pass_manager = PassManager(_pass)
    qiskit_circ_opt = pass_manager.run(qiskit_circ)
    c_opt = zx.Circuit.from_qasm(qiskit_circ_opt.qasm())

    opt_tcount = c_opt.tcount()
    opt_2qubitcount = c_opt.twoqubitcount()

    # Quick and dirty. In theory, should depend on score function
    if orig_tcount == opt_tcount and orig_2qubitcount == opt_2qubitcount:
        return False, (c, g)
    return True, (c_opt, c_opt.to_graph())

# basic_swap = partial(qiskit_pass_base, _pass=BasicSwap()) # FIXME: how to use coupling map?
cx_cancellation = partial(qiskit_pass_base, _pass=CXCancellation())
optimize_1q = partial(qiskit_pass_base, _pass=Optimize1qGates())
optimize_1q_decomp = partial(qiskit_pass_base, _pass=Optimize1qGatesDecomposition())


def tket_pass_base(c, g, _pass):
    orig_tcount = c.tcount()
    orig_2qubitcount = c.twoqubitcount()

    c_tket = pyzx_to_tk(c)
    _pass.apply(c_tket)
    RebasePyZX().apply(c_tket)
    c_opt = tk_to_pyzx(c_tket)

    opt_tcount = c_opt.tcount()
    opt_2qubitcount = c_opt.twoqubitcount()