Example #1
0
 def _construct_kth_evolution(self, slice_pauli_list, k, omega):
     """Construct the kth iteration Quantum Phase Estimation circuit"""
     a = QuantumRegister(1, name='a')
     c = ClassicalRegister(1, name='c')
     q = QuantumRegister(self._operator.num_qubits, name='q')
     qc = self._state_in.construct_circuit('circuit', q)
     # hadamard on a[0]
     qc.add_register(a)
     qc.u2(0, np.pi, a[0])
     # controlled-U
     qc_evolutions = Operator.construct_evolution_circuit(
         slice_pauli_list, -2 * np.pi, self._num_time_slices, q, a, unitary_power=2 ** (k - 1),
         shallow_slicing=self._shallow_circuit_concat
     )
     if self._shallow_circuit_concat:
         qc.data += qc_evolutions.data
     else:
         qc += qc_evolutions
     # global phase due to identity pauli
     qc.u1(2 * np.pi * self._ancilla_phase_coef * (2 ** (k - 1)), a[0])
     # rz on a[0]
     qc.u1(omega, a[0])
     # hadamard on a[0]
     qc.u2(0, np.pi, a[0])
     qc.add_register(c)
     qc.barrier(a)
     qc.measure(a, c)
     return qc
Example #2
0
File: qpe.py Project: simhan/aqua
    def _construct_qpe_evolution(self):
        """Implement the Quantum Phase Estimation algorithm"""

        a = QuantumRegister(self._num_ancillae, name='a')
        c = ClassicalRegister(self._num_ancillae, name='c')
        q = QuantumRegister(self._operator.num_qubits, name='q')

        # initialize state_in
        qc = self._state_in.construct_circuit('circuit', q)

        # Put all ancillae in uniform superposition
        qc.add(a)
        qc.u2(0, np.pi, a)

        # phase kickbacks via eoh
        pauli_list = self._operator.reorder_paulis(
            grouping=self._paulis_grouping)
        if len(pauli_list) == 1:
            slice_pauli_list = pauli_list
        else:
            if self._expansion_mode == 'trotter':
                slice_pauli_list = pauli_list
            elif self._expansion_mode == 'suzuki':
                slice_pauli_list = Operator._suzuki_expansion_slice_pauli_list(
                    pauli_list, 1, self._expansion_order)
            else:
                raise ValueError('Unrecognized expansion mode {}.'.format(
                    self._expansion_mode))
        for i in range(self._num_ancillae):
            qc_evolutions = Operator.construct_evolution_circuit(
                slice_pauli_list,
                -2 * np.pi,
                self._num_time_slices,
                q,
                a,
                ctl_idx=i,
                shallow_slicing=self._shallow_circuit_concat)
            if self._shallow_circuit_concat:
                qc.data += qc_evolutions.data
            else:
                qc += qc_evolutions
            # global phase shift for the ancilla due to the identity pauli term
            qc.u1(2 * np.pi * self._ancilla_phase_coef * (2**i), a[i])

        # inverse qft on ancillae
        self._iqft.construct_circuit('circuit', a, qc)

        # measuring ancillae
        qc.add(c)
        qc.barrier(a)
        qc.measure(a, c)

        self._circuit = qc
Example #3
0
    def construct_circuit(self, k=None, omega=0):
        """Construct the kth iteration Quantum Phase Estimation circuit.

        For details of parameters, please see Fig. 2 in https://arxiv.org/pdf/quant-ph/0610214.pdf.

        Args:
            k (int): the iteration idx.
            omega (float): the feedback angle.
        Returns:
            QuantumCircuit: the quantum circuit per iteration
        """
        k = self._num_iterations if k is None else k
        a = QuantumRegister(1, name='a')
        c = ClassicalRegister(1, name='c')
        q = QuantumRegister(self._operator.num_qubits, name='q')
        qc = self._state_in.construct_circuit('circuit', q)
        # hadamard on a[0]
        qc.add_register(a)
        qc.u2(0, np.pi, a[0])
        # controlled-U
        qc_evolutions = Operator.construct_evolution_circuit(
            self._slice_pauli_list,
            -2 * np.pi,
            self._num_time_slices,
            q,
            a,
            unitary_power=2**(k - 1),
            shallow_slicing=self._shallow_circuit_concat)
        if self._shallow_circuit_concat:
            qc.data += qc_evolutions.data
        else:
            qc += qc_evolutions
        # global phase due to identity pauli
        qc.u1(2 * np.pi * self._ancilla_phase_coef * (2**(k - 1)), a[0])
        # rz on a[0]
        qc.u1(omega, a[0])
        # hadamard on a[0]
        qc.u2(0, np.pi, a[0])
        qc.add_register(c)
        qc.barrier(a)
        qc.measure(a, c)
        return qc
    def construct_circuit(self, x, qr=None, inverse=False):
        """
        Construct the second order expansion based on given data.

        Args:
            x (numpy.ndarray): 1-D to-be-transformed data.
            qr (QauntumRegister): the QuantumRegister object for the circuit, if None,
                                  generate new registers with name q.
            inverse (bool): whether or not inverse the circuit

        Returns:
            QuantumCircuit: a quantum circuit transform data x.
        """
        if not isinstance(x, np.ndarray):
            raise TypeError("x must be numpy array.")
        if x.ndim != 1:
            raise ValueError("x must be 1-D array.")
        if x.shape[0] != self._num_qubits:
            raise ValueError(
                "number of qubits and data dimension must be the same.")

        if qr is None:
            qc = self._construct_circuit_with_template(x)
        else:
            qc = QuantumCircuit(qr)
            for _ in range(self._depth):
                for i in range(self._num_qubits):
                    qc.u2(0, pi, qr[i])
                for pauli in self._pauli_strings:
                    coeff = self._data_map_func(
                        self._extract_data_for_rotation(pauli, x))
                    p = Pauli.from_label(pauli)
                    qc += Operator.construct_evolution_circuit([[coeff, p]], 1,
                                                               1, qr)

        if inverse:
            qc.data = [gate.inverse() for gate in reversed(qc.data)]

        return qc
    def construct_circuit(self,
                          state_register=None,
                          ancilla_register=None,
                          aux_register=None,
                          measure=False):
        """
        Construct the Phase Estimation circuit

        Args:
            state_register (QuantumRegister): the optional register to use for the quantum state
            ancilla_register (QuantumRegister): the optional register to use for the ancillary measurement qubits
            aux_register (QuantumRegister): an optional auxiliary quantum register
            measure (bool): boolean flag to indicate if the built circuit should include ancilla measurement

        Returns:
            the QuantumCircuit object for the constructed circuit
        """

        if self._circuit[measure] is None:
            if self._operator is not None:
                # check for identify paulis to get its coef for applying global phase shift on ancillae later
                num_identities = 0
                for p in self._operator.paulis:
                    if np.all(np.logical_not(p[1].z)) and np.all(
                            np.logical_not(p[1].x)):
                        num_identities += 1
                        if num_identities > 1:
                            raise RuntimeError(
                                'Multiple identity pauli terms are present.')
                        self._ancilla_phase_coef = p[0].real if isinstance(
                            p[0], complex) else p[0]

            if ancilla_register is None:
                a = QuantumRegister(self._num_ancillae, name='a')
            else:
                a = ancilla_register

            if state_register is None:
                if self._operator is not None:
                    q = QuantumRegister(self._operator.num_qubits, name='q')
                elif self._unitary_circuit_factory is not None:
                    q = QuantumRegister(
                        self._unitary_circuit_factory.num_target_qubits,
                        name='q')
                else:
                    raise RuntimeError('Missing operator specification.')
            else:
                q = state_register
            qc = QuantumCircuit(a, q)

            if aux_register is None:
                num_aux_qubits, aux = 0, None
                if self._state_in_circuit_factory is not None:
                    num_aux_qubits = self._state_in_circuit_factory.required_ancillas(
                    )
                if self._unitary_circuit_factory is not None:
                    num_aux_qubits = max(
                        num_aux_qubits,
                        self._unitary_circuit_factory.
                        required_ancillas_controlled())

                if num_aux_qubits > 0:
                    aux = QuantumRegister(num_aux_qubits, name='aux')
                    qc.add_register(aux)
            else:
                aux = aux_register
                qc.add_register(aux)

            # initialize state_in
            if self._state_in is not None:
                qc.data += self._state_in.construct_circuit('circuit', q).data
            elif self._state_in_circuit_factory is not None:
                self._state_in_circuit_factory.build(qc, q, aux)
            else:
                raise RuntimeError('Missing initial state specification.')

            # Put all ancillae in uniform superposition
            qc.u2(0, np.pi, a)

            # phase kickbacks via dynamics
            if self._operator is not None:
                pauli_list = self._operator.reorder_paulis(
                    grouping=self._paulis_grouping)
                if len(pauli_list) == 1:
                    slice_pauli_list = pauli_list
                else:
                    if self._expansion_mode == 'trotter':
                        slice_pauli_list = pauli_list
                    elif self._expansion_mode == 'suzuki':
                        slice_pauli_list = Operator._suzuki_expansion_slice_pauli_list(
                            pauli_list, 1, self._expansion_order)
                    else:
                        raise ValueError(
                            'Unrecognized expansion mode {}.'.format(
                                self._expansion_mode))
                for i in range(self._num_ancillae):
                    qc_evolutions = Operator.construct_evolution_circuit(
                        slice_pauli_list,
                        -2 * np.pi,
                        self._num_time_slices,
                        q,
                        a,
                        ctl_idx=i,
                        shallow_slicing=self._shallow_circuit_concat)
                    if self._shallow_circuit_concat:
                        qc.data += qc_evolutions.data
                    else:
                        qc += qc_evolutions
                    # global phase shift for the ancilla due to the identity pauli term
                    qc.u1(2 * np.pi * self._ancilla_phase_coef * (2**i), a[i])
            elif self._unitary_circuit_factory is not None:
                for i in range(self._num_ancillae):
                    self._unitary_circuit_factory.build_controlled_power(
                        qc, q, a[i], 2**i, aux)

            # inverse qft on ancillae
            self._iqft.construct_circuit('circuit', a, qc)

            # measuring ancillae
            if measure:
                c = ClassicalRegister(self._num_ancillae, name='c')
                qc.add_register(c)
                qc.barrier(a)
                qc.measure(a, c)

            self._circuit[measure] = qc

        return self._circuit[measure]