Example #1
0
 def testConcatenation(self):
     self.assertEqual(
         parse_circuit_strings('a(1) +  b(2)'),
         Concatenation(CircuitSymbol('a', 1), CircuitSymbol('b', 2)))
     self.assertEqual(
         parse_circuit_strings('a(1) +  b(2) + c(3)'),
         Concatenation(CircuitSymbol('a', 1), CircuitSymbol('b', 2),
                       CircuitSymbol('c', 3)))
Example #2
0
 def testSeries(self):
     self.assertEqual(
         parse_circuit_strings('a(2) <<  b(2)'),
         SeriesProduct(CircuitSymbol('a', 2), CircuitSymbol('b', 2)))
     self.assertEqual(
         parse_circuit_strings('a(5) <<  b(5) << c(5)'),
         SeriesProduct(CircuitSymbol('a', 5), CircuitSymbol('b', 5),
                       CircuitSymbol('c', 5)))
def setup_qnet_sys(n_cavity,
                   stark_shift=False,
                   zero_phi=True,
                   keep_delta=False,
                   slh=True):
    """Return the effective SLH model (if `slh` is True) or a the symbolic
    circuit (if `slh` is False) for a two-node network, together with the
    symbols and operators in each node"""
    Sym1, Op1 = qnet_node_system('1',
                                 n_cavity,
                                 zero_phi=zero_phi,
                                 keep_delta=keep_delta)
    Sym2, Op2 = qnet_node_system('2',
                                 n_cavity,
                                 zero_phi=zero_phi,
                                 keep_delta=keep_delta)
    if slh:
        H1 = node_hamiltonian(Sym1,
                              Op1,
                              stark_shift=stark_shift,
                              zero_phi=zero_phi,
                              keep_delta=keep_delta)
        H2 = node_hamiltonian(Sym2,
                              Op2,
                              stark_shift=stark_shift,
                              zero_phi=zero_phi,
                              keep_delta=keep_delta)
        S = identity_matrix(1)
        κ = Sym1['kappa']
        L1 = sympy.sqrt(2 * κ) * Op1['a']
        κ = Sym2['kappa']
        L2 = sympy.sqrt(2 * κ) * Op2['a']
        SLH1 = SLH(S, [
            L1,
        ], H1)
        SLH2 = SLH(S, [
            L2,
        ], H2)

    Node1 = CircuitSymbol("Node1", cdim=1)
    Node2 = CircuitSymbol("Node2", cdim=1)

    components = [Node1, Node2]
    connections = [
        ((Node1, 0), (Node2, 0)),
    ]
    circuit = connect(components, connections)
    if slh:
        network = circuit.substitute({Node1: SLH1, Node2: SLH2})
    else:
        network = circuit

    return network, Sym1, Op1, Sym2, Op2
Example #4
0
 def testDrawNested(self):
     self.assertCanBeDrawn(
         SeriesProduct(
             CircuitSymbol('a', 2),
             Concatenation(CircuitSymbol('b', 1), CircuitSymbol('c', 1))))
     self.assertCanBeDrawn(
         Concatenation(
             CircuitSymbol('a', 2),
             SeriesProduct(CircuitSymbol('b', 1), CircuitSymbol('c', 1))))
     self.assertCanBeDrawn(
         Feedback(
             Concatenation(
                 CircuitSymbol('a', 2),
                 SeriesProduct(CircuitSymbol('b', 1),
                               CircuitSymbol('c', 1))), 2, 0))
Example #5
0
 def testNested(self):
     self.assertEqual(
         parse_circuit_strings('a(2) <<  (b(1) + c(1))'),
         SeriesProduct(
             CircuitSymbol('a', 2),
             Concatenation(CircuitSymbol('b', 1), CircuitSymbol('c', 1))))
     self.assertEqual(
         parse_circuit_strings('a(2) +  (b(1) << c(1))'),
         Concatenation(
             CircuitSymbol('a', 2),
             SeriesProduct(CircuitSymbol('b', 1), CircuitSymbol('c', 1))))
     self.assertEqual(
         parse_circuit_strings('[a(2) +  (b(1) << c(1))]_(2->0)'),
         Feedback(
             Concatenation(
                 CircuitSymbol('a', 2),
                 SeriesProduct(CircuitSymbol('b', 1),
                               CircuitSymbol('c', 1))), 2, 0))
def setup_qnet_2chan_chain(n_cavity, n_nodes, slh=True, topology=None):
    """Set up a chain of JC system with two channels

    Args:
        n_cavity (int): Number of levels in the cavity (numerical truncation)
        n_nodes (int):  Number of nodes in the chain
        slh (bool): If True, return effective SLH object. If False, return
            circuit of linked nodes
        topology (str or None): How the nodes should be linked up, see below

    Notes:

        The `topology` can take the following values:
        * None (default): chain is open-endeded. The total system will have two
          I/O channels
        * "FB": The rightmost output is fed back into the rightmost input::
              >-------+
                      |
              <-------+
    """

    # Set up the circuit
    components = []
    connections = []
    prev_node = None
    for i in range(n_nodes):
        ind = i + 1
        cur_node = CircuitSymbol("Node%d" % ind, cdim=2)
        components.append(cur_node)
        if prev_node is not None:
            if topology in [None, 'FB']:
                connections.append(((prev_node, 1), (cur_node, 0)))
                connections.append(((cur_node, 0), (prev_node, 1)))
            else:
                raise ValueError("Unknown topology: %s" % topology)
        prev_node = cur_node
    if topology == 'FB':
        connections.append(((cur_node, 1), (cur_node, 1)))
    circuit = connect(components, connections)

    if slh:
        slh_map = slh_map_2chan_chain(components, n_cavity)
        return circuit.substitute(slh_map).toSLH()
    else:
        return circuit
Example #7
0
 def testFeedback(self):
     self.assertEqual(parse_circuit_strings('[M(5)]_(3->4)'),
                      Feedback(CircuitSymbol('M', 5), 3, 4))
Example #8
0
 def testSymbol(self):
     self.assertEqual(parse_circuit_strings('a(2)'), CircuitSymbol('a', 2))
     self.assertEqual(parse_circuit_strings('a(5)'), CircuitSymbol('a', 5))
     self.assertEqual(parse_circuit_strings('a_longer_string(5)'),
                      CircuitSymbol('a_longer_string', 5))
Example #9
0
 def testDrawFeedback(self):
     self.assertCanBeDrawn(Feedback(CircuitSymbol('M', 5), 3, 4))
Example #10
0
 def testDrawConcatenation(self):
     self.assertCanBeDrawn(
         Concatenation(CircuitSymbol('a', 5), CircuitSymbol('b', 5)))
Example #11
0
 def testDrawSeries(self):
     self.assertCanBeDrawn(
         SeriesProduct(CircuitSymbol('a', 5), CircuitSymbol('b', 5)))
Example #12
0
 def testDrawSymbol(self):
     self.assertCanBeDrawn(CircuitSymbol('b', 1))
     self.assertCanBeDrawn(CircuitSymbol('b', 2))
Example #13
0
def get_symbol(cdim):
    global symbol_counter
    sym = CircuitSymbol('test_%d' % symbol_counter, cdim)
    symbol_counter += 1
    return sym
Example #14
0
    def testFactorizePermutation(self):
        self.assertEqual(full_block_perm((0, 1, 2), (1, 1, 1)), (0, 1, 2))
        self.assertEqual(full_block_perm((0, 2, 1), (1, 1, 1)), (0, 2, 1))
        self.assertEqual(full_block_perm((0, 2, 1), (1, 1, 2)), (0, 3, 1, 2))
        self.assertEqual(full_block_perm((0, 2, 1), (1, 2, 3)),
                         (0, 4, 5, 1, 2, 3))
        self.assertEqual(full_block_perm((1, 2, 0), (1, 2, 3)),
                         (3, 4, 5, 0, 1, 2))
        self.assertEqual(full_block_perm((3, 1, 2, 0), (1, 2, 3, 4)),
                         (9, 4, 5, 6, 7, 8, 0, 1, 2, 3))
        self.assertEqual(block_perm_and_perms_within_blocks((9, 4, 5, 6, 7, 8, 0, 1, 2, 3 ), (1,2,3,4)), \
                                                                        ((3,1,2,0), [(0,),(0,1),(0,1,2),(0,1,2,3)]))

        A1, A2, A3, A4 = get_symbols(1, 2, 3, 4)

        new_lhs, permuted_rhs, new_rhs = P_sigma(
            9, 4, 5, 6, 7, 8, 0, 1, 2, 3)._factorize_for_rhs(A1 + A2 + A3 + A4)
        self.assertEqual(new_lhs, cid(10))
        self.assertEqual(permuted_rhs, (A4 + A2 + A3 + A1))
        self.assertEqual(new_rhs, P_sigma(9, 4, 5, 6, 7, 8, 0, 1, 2, 3))

        p = P_sigma(0, 1, 4, 2, 3, 5)
        expr = A2 + A3 + A1
        new_lhs, permuted_rhs, new_rhs = p._factorize_for_rhs(expr)
        self.assertEqual(new_lhs, cid(6))
        self.assertEqual(permuted_rhs, A2 + (P_sigma(2, 0, 1) << A3) + A1)
        self.assertEqual(new_rhs, cid(6))

        p = P_sigma(0, 3, 1, 2)

        p_r = P_sigma(2, 0, 1)
        assert p == cid(1) + p_r
        A = get_symbol(2)

        new_lhs, permuted_rhs, new_rhs = p._factorize_for_rhs(
            cid(1) + A + cid(1))

        self.assertEqual(new_lhs, P_sigma(0, 1, 3, 2))
        self.assertEqual(permuted_rhs,
                         (cid(1) + (P_sigma(1, 0) << A) + cid(1)))
        self.assertEqual(new_rhs, cid(4))

        new_lhs, permuted_rhs, new_rhs = p._factorize_for_rhs(cid(2) + A)

        self.assertEqual(new_lhs, cid(4))
        self.assertEqual(permuted_rhs, (cid(1) + A + cid(1)))
        self.assertEqual(new_rhs, p)

        self.assertEqual(
            p.series_inverse() << (cid(2) + A),
            cid(1) + SeriesProduct(
                P_sigma(0, 2, 1),
                Concatenation(SeriesProduct(P_sigma(1, 0), A), cid(1)),
                P_sigma(2, 0, 1)))

        self.assertEqual(
            p.series_inverse() << (cid(2) + A) << p,
            cid(1) + (p_r.series_inverse() << (cid(1) + A) << p_r))

        new_lhs, permuted_rhs, new_rhs = P_sigma(4, 2, 1, 3,
                                                 0)._factorize_for_rhs(
                                                     (A4 + cid(1)))
        self.assertEqual(new_lhs, cid(5))
        self.assertEqual(permuted_rhs, (cid(1) + (P_sigma(3, 1, 0, 2) << A4)))
        self.assertEqual(new_rhs, map_signals_circuit({4: 0}, 5))

        ## special test case that helped find the major permutation block structure factorization bug
        p = P_sigma(3, 4, 5, 0, 1, 6, 2)
        q = cid(3) + CircuitSymbol('NAND1', 4)

        new_lhs, permuted_rhs, new_rhs = p._factorize_for_rhs(q)
        self.assertEqual(new_lhs, P_sigma(0, 1, 2, 6, 3, 4, 5))
        self.assertEqual(permuted_rhs,
                         (P_sigma(0, 1, 3, 2) << CircuitSymbol('NAND1', 4)) +
                         cid(3))
        self.assertEqual(new_rhs, P_sigma(4, 5, 6, 0, 1, 2, 3))