def run_monthly_rebalance(tickers, ticker_weights, title, start_date, end_date, initial_equity): testing = False config = settings.from_file(settings.DEFAULT_CONFIG_FILENAME, testing) # Use the Monthly Liquidate And Rebalance strategy events_queue = queue.Queue() strategy = MonthlyLiquidateRebalanceStrategy(tickers, events_queue) # Use the liquidate and rebalance position sizer # with prespecified ticker weights position_sizer = LiquidateRebalancePositionSizer(ticker_weights) # Set up the backtest backtest = TradingSession( config, strategy, tickers, initial_equity, start_date, end_date, events_queue, position_sizer=position_sizer, title=[title], benchmark=tickers[0], ) results = backtest.start_trading(testing=testing) return results
def run(config, testing, tickers, filename): # Backtest information title = ['Monthly Liquidate/Rebalance on 60%/40% SPY/AGG Portfolio'] initial_equity = 500000.0 start_date = datetime.datetime(2006, 11, 1) end_date = datetime.datetime(2016, 10, 12) # Use the Monthly Liquidate And Rebalance strategy events_queue = queue.Queue() strategy = MonthlyLiquidateRebalanceStrategy(tickers, events_queue) # Use the liquidate and rebalance position sizer # with prespecified ticker weights ticker_weights = { "SPY": 0.6, "AGG": 0.4, } position_sizer = LiquidateRebalancePositionSizer(ticker_weights) # Set up the backtest backtest = TradingSession( config, strategy, tickers, initial_equity, start_date, end_date, events_queue, position_sizer=position_sizer, title=title, benchmark=tickers[0], ) results = backtest.start_trading(testing=testing) return results
def run(config, testing, tickers, filename): # Backtest information title = ['Moving Average Crossover Example on %s: 100x300' % filename] initial_equity = 10000.0 start_date = datetime.datetime(2013, 1, 1) end_date = datetime.datetime(2018, 1, 1) cycle = 'D' # Use the MAC Strategy events_queue = queue.Queue() strategy = MovingAverageCrossStrategy(tickers[0], events_queue, short_window=1, long_window=20) # Set up the backtest backtest = TradingSession(config, strategy, tickers, initial_equity, start_date, end_date, events_queue, price_handler='tushare', title=title, benchmark=tickers[1], cycle=cycle) results = backtest.start_trading(testing=testing, filename=filename) return results
def run(config, testing, tickers, filename): # Backtest information title = ["Kalman Filter Pairs Trade on %s/%s" % (tickers[0], tickers[1])] initial_equity = 100000.0 start_date = datetime.datetime(2017, 1, 1) end_date = datetime.datetime(2018, 8, 19) # Use the KalmanPairsTrading Strategy events_queue = queue.Queue() strategy = KalmanPairsTradingStrategy(tickers, events_queue) # Use the Naive Position Sizer where # suggested quantities are followed position_sizer = NaivePositionSizer() # Set up the backtest backtest = TradingSession(config, strategy, tickers, initial_equity, start_date, end_date, events_queue, title=title, position_sizer=position_sizer) results = backtest.start_trading(testing=testing) return results
def run(config, testing, tickers, filename): # Backtest information title = ['Aluminium Smelting Strategy - ARNC/UNG'] initial_equity = 500000.0 start_date = datetime.datetime(2014, 11, 11) end_date = datetime.datetime(2016, 9, 1) # Use the Cointegration Bollinger Bands trading strategy events_queue = queue.Queue() weights = np.array([1.0, -1.213]) lookback = 15 entry_z = 1.5 exit_z = 0.5 base_quantity = 10000 strategy = CointegrationBollingerBandsStrategy(tickers, events_queue, lookback, weights, entry_z, exit_z, base_quantity) # Set the position size to use a # fixed base quantity of shares position_sizer = FixedPositionSizer(default_quantity=base_quantity) # Set up the backtest backtest = TradingSession(config, strategy, tickers, initial_equity, start_date, end_date, events_queue, title=title, position_sizer=position_sizer) results = backtest.start_trading(testing=testing) return results
def run(config, testing, tickers, filename): # Backtest information title = ['Moving Average Crossover Example'] initial_equity = 10000.0 ##start_date = datetime.datetime(2011, 1, 1) ##end_date = datetime.datetime(2020, 1, 1) start_date = datetime.datetime(2015, 1, 1) end_date = datetime.datetime(2020, 1, 1) # Use the MAC Strategy events_queue = queue.Queue() strategy = MovingAverageCrossStrategy(tickers[0], events_queue, short_window=50, long_window=100) # Set up the backtest backtest = TradingSession( config, strategy, tickers, initial_equity, start_date, end_date, events_queue, session_type="backtest", name="strategy1", #benchmark=tickers[1], title=title) results = backtest.start_trading(testing=testing) #print(type(backtest)) return results
def run(config, testing, tickers, filename): # Backtest information title = ['Reblance Example'] initial_equity = 10000.0 ##start_date = datetime.datetime(2011, 1, 1) ##end_date = datetime.datetime(2020, 1, 1) start_date = datetime.datetime(2015, 1, 1) end_date = datetime.datetime(2020, 1, 1) # Use the MAC Strategy events_queue = queue.Queue() strategy = MonthRebalanceStrategy(tickers, events_queue) # Set up the backtest backtest = TradingSession(config, strategy, tickers, initial_equity, start_date, end_date, events_queue, session_type="backtest", name="month_reb", title=title, benchmark=None) results = backtest.start_trading(testing=testing) return results
def run(config, testing, tickers, filename): # Backtest information title = ['Buy and Hold Example on %s' % tickers[0]] initial_equity = 10000.0 start_date = datetime.datetime(2005, 1, 1) end_date = datetime.datetime(2018, 8, 17) # Use the Buy and Hold Strategy events_queue = queue.Queue() strategy = BuyAndHoldStrategy(tickers[0], events_queue) # Set up the backtest backtest = TradingSession(config, strategy, tickers, initial_equity, start_date, end_date, events_queue, price_handler='tushare', title=title, benchmark=tickers[1]) results = backtest.start_trading(testing=testing, filename=filename) return results
def run(config, testing, tickers, filename): # Backtest information title = ['Moving Average Crossover Example on AAPL: 100x300'] initial_equity = 10000.0 start_date = datetime.datetime(2000, 1, 1) end_date = datetime.datetime(2014, 1, 1) # Use the MAC Strategy events_queue = queue.Queue() strategy = MovingAverageCrossStrategy(tickers[0], events_queue, short_window=100, long_window=300) # Set up the backtest backtest = TradingSession( config, strategy, tickers, initial_equity, start_date, end_date, events_queue, title=title, benchmark=tickers[1], ) results = backtest.start_trading(testing=testing) return results
def run(config, testing, tickers, filename): # Set up variables needed for backtest events_queue = queue.Queue() csv_dir = config.CSV_DATA_DIR initial_equity = PriceParser.parse(100000.00) # Use Yahoo Daily Price Handler start_date = datetime.datetime(2009, 8, 3) end_date = datetime.datetime(2019, 8, 1) price_handler = YahooDailyCsvBarPriceHandler(csv_dir, events_queue, tickers, start_date=start_date, end_date=end_date) # Use the KalmanPairsTrading Strategy strategy = KalmanPairsTradingStrategy(tickers, events_queue) strategy = Strategies(strategy) # Use the Naive Position Sizer (suggested quantities are followed) position_sizer = NaivePositionSizer() # Use an example Risk Manager risk_manager = ExampleRiskManager() # Use the default Portfolio Handler portfolio_handler = PortfolioHandler(initial_equity, events_queue, price_handler, position_sizer, risk_manager) # Use the ExampleCompliance component compliance = ExampleCompliance(config) # Use a simulated IB Execution Handler execution_handler = IBSimulatedExecutionHandler(events_queue, price_handler, compliance) # Use the Tearsheet Statistics title = ["Kalman Filter Pairs Trade on TLT/IEI"] statistics = TearsheetStatistics(config, portfolio_handler, title) # Set up the backtest backtest = TradingSession(config, strategy, tickers, initial_equity, start_date, end_date, events_queue, price_handler=price_handler, portfolio_handler=portfolio_handler, execution_handler=execution_handler, position_sizer=position_sizer, risk_manager=risk_manager, statistics=statistics) results = backtest.start_trading(testing=testing) statistics.save(filename) return results
def run(config, testing, tickers, filename): # Set up variables needed for backtest title = ["Intraday AREX Machine Learning Prediction Strategy"] events_queue = queue.Queue() csv_dir = "/path/to/your/csv/data/" initial_equity = 500000.0 # Use DTN IQFeed Intraday Bar Price Handler start_date = datetime.datetime(2013, 1, 1) end_date = datetime.datetime(2014, 3, 11) price_handler = IQFeedIntradayCsvBarPriceHandler(csv_dir, events_queue, tickers, start_date=start_date) # Use the ML Intraday Prediction Strategy model_pickle_file = '/path/to/your/ml_model_lda.pkl' strategy = IntradayMachineLearningPredictionStrategy(tickers, events_queue, model_pickle_file, lags=5) # Use the Naive Position Sizer where # suggested quantities are followed position_sizer = NaivePositionSizer() # Use an example Risk Manager risk_manager = ExampleRiskManager() # Use the default Portfolio Handler portfolio_handler = PortfolioHandler(PriceParser.parse(initial_equity), events_queue, price_handler, position_sizer, risk_manager) # Use the Tearsheet Statistics statistics = TearsheetStatistics( config, portfolio_handler, title=title, periods=int(252 * 6.5 * 60) # Minutely periods ) # Set up the backtest backtest = TradingSession(config, strategy, tickers, initial_equity, start_date, end_date, events_queue, title=title, portfolio_handler=portfolio_handler, position_sizer=position_sizer, price_handler=price_handler, statistics=statistics) results = backtest.start_trading(testing=testing) return results
def run(config, testing, tickers, filename): # Set up variables needed for backtest events_queue = queue.Queue() csv_dir = config.CSV_DATA_DIR initial_equity = PriceParser.parse(500000.00) # Use Yahoo Daily Price Handler start_date = datetime.datetime(2013, 7, 1) end_date = datetime.datetime(2019, 6, 1) price_handler = YahooDailyCsvBarPriceHandler(csv_dir, events_queue, tickers, start_date=start_date, end_date=end_date) # Use the Cointegration Bollinger Bands trading strategy weights = np.array([1.0, -1.213]) lookback = 15 entry_z = 1.5 exit_z = 0.5 base_quantity = 10000 strategy = CointegrationBollingerBandsStrategy(tickers[1:], events_queue, lookback, weights, entry_z, exit_z, base_quantity) strategy = Strategies(strategy) # Use the Naive Position Sizer # where suggested quantities are followed position_sizer = NaivePositionSizer() # Use an example Risk Manager risk_manager = ExampleRiskManager() # Use the default Portfolio Handler portfolio_handler = PortfolioHandler(initial_equity, events_queue, price_handler, position_sizer, risk_manager) # Use the ExampleCompliance component compliance = ExampleCompliance(config) # Use a simulated IB Execution Handler execution_handler = IBSimulatedExecutionHandler(events_queue, price_handler, compliance) # Use the Tearsheet Statistics title = ["Aluminum Smelting Strategy - ARNC/UNG"] statistics = TearsheetStatistics(config, portfolio_handler, title, benchmark=tickers[0]) # Set up the backtest backtest = TradingSession(config, strategy, tickers[1:], initial_equity, start_date, end_date, events_queue, price_handler=price_handler, portfolio_handler=portfolio_handler, execution_handler=execution_handler, position_sizer=position_sizer, risk_manager=risk_manager, statistics=statistics, benchmark=tickers[0]) results = backtest.start_trading(testing=testing) statistics.save(filename) return results
def run(config, testing, tickers, filename): # Backtest information events_queue = queue.Queue() title = [ 'Sentiment Sentdex Strategy - Tech Stocks' #'Sentiment Sentdex Strategy - Defence Stocks' #'Sentiment Sentdex Strategy - Energy Stocks' ] initial_equity = 500000.0 start_date = datetime.datetime(2012, 10, 15) end_date = datetime.datetime(2016, 2, 2) # Use the Sentdex Sentiment trading strategy sentiment_handler = SentdexSentimentHandler(config.CSV_DATA_DIR, "sentdex_sample.csv", events_queue, tickers=tickers, start_date=start_date, end_date=end_date) # Use the Sentdex Sentiment trading strategy base_quantity = 500 sent_buy = 6 sent_sell = -1 strategy = SentdexSentimentStrategy(tickers, events_queue, sent_buy, sent_sell, base_quantity) # Use the Fixed Position Sizer where # suggested quantities are followed position_sizer = FixedPositionSizer(default_quantity=base_quantity) # Set up the backtest backtest = TradingSession(config, strategy, tickers, initial_equity, start_date, end_date, events_queue, title=title, position_sizer=position_sizer, sentiment_handler=sentiment_handler, benchmark="SPY") results = backtest.start_trading(testing=testing) return results
def run(config, testing, tickers, filename): # Backtest information title = ['Monthly Liquidate/Rebalance on 60%/40% SPY/AGG Portfolio'] initial_equity = 500000.0 start_date = datetime.datetime(2006, 11, 1) end_date = datetime.datetime(2016, 10, 12) # Use the Monthly Liquidate And Rebalance strategy events_queue = queue.Queue() strategy = MonthlyLiquidateRebalanceStrategy(tickers, events_queue) # Use the liquidate and rebalance position sizer # with prespecified ticker weights ticker_weights = { "ewg.us": 0.4, "ewq.us": 0.6, } position_sizer = LiquidateRebalancePositionSizer(ticker_weights) # Set up the backtest backtest = TradingSession( config, strategy, tickers, initial_equity, start_date, end_date, events_queue, position_sizer=position_sizer, price_handler=DailyCsvBarPriceHandler('~/Desktop/stock-data/ETFs', ext_data='txt', init_tickers=tickers, events_queue=events_queue, start_date=start_date, end_date=end_date), title=title, benchmark=tickers[0], ) results = backtest.start_trading(testing=testing) return results
def run(config, testing, tickers, filename): # Backtest information title = [ 'Monthly Liquidate/Rebalance on 40%/30% 30% sz50/zz500/cyb Portfolio' ] initial_equity = 300000.0 start_date = datetime.datetime(2010, 11, 1) end_date = datetime.datetime(2018, 8, 18) # Use the Monthly Liquidate And Rebalance strategy events_queue = queue.Queue() strategy = MonthlyLiquidateRebalanceStrategy(tickers, events_queue) # Use the liquidate and rebalance position sizer # with prespecified ticker weights ticker_weights = { "510050": 0.4, "510500": 0.3, "159915": 0.3, } position_sizer = LiquidateRebalancePositionSizer(ticker_weights) # Set up the backtest backtest = TradingSession( config, strategy, tickers, initial_equity, start_date, end_date, events_queue, price_handler='tushare', position_sizer=position_sizer, title=title, benchmark=tickers[0], ) results = backtest.start_trading(testing=testing) return results
def run(config, testing, tickers, filename): #build_HMM_model() build_HMM_model2() title = ["Trend Following Regime Detection without HMM"] #pickle_path = "hmm_model_spy.pkl" pickle_path = "hmm_model_spy2.pkl" #pickle_path = "hmm_model_fx.pkl" events_queue = queue.Queue() csv_dir = config.CSV_DATA_DIR initial_equity = 100000.00 start_date = datetime.datetime(2011, 1, 1) end_date = datetime.datetime(2018, 3, 31) # Use the Moving Average Crossover trading strategy base_quantity = 10000 strategy = MovingAverageCrossStrategy(tickers, events_queue, base_quantity, short_window=10, long_window=30) # Use Yahoo Daily Price Handler price_handler = YahooDailyCsvBarPriceHandler(csv_dir, events_queue, tickers, start_date=start_date, end_date=end_date, calc_adj_returns=True) # Use the Naive Position Sizer # where suggested quantities are followed position_sizer = NaivePositionSizer() # Use an example Risk Manager #risk_manager = ExampleRiskManager() # Use regime detection HMM risk manager hmm_model = pickle.load(open(pickle_path, "rb")) risk_manager = RegimeHMMRiskManager(hmm_model) # Use the default Portfolio Handler portfolio_handler = PortfolioHandler(PriceParser.parse(initial_equity), events_queue, price_handler, position_sizer, risk_manager) # Use the Tearsheet Statistics class statistics = TearsheetStatistics( config, portfolio_handler, #title,benchmark = "EEM" title, benchmark="VWO") # Set up the backtest backtest = TradingSession(config, strategy, tickers, initial_equity, start_date, end_date, events_queue, title=title, price_handler=price_handler, position_sizer=position_sizer, risk_manager=risk_manager, statistics=statistics, portfolio_handler=portfolio_handler) results = backtest.start_trading(testing=testing) return results
def run(config, testing, tickers, cliente, strat_set): events_queue = queue.Queue() initial_equity = 30000.0 end_session_time = datetime(2018, 2, 23, 16, 1, 00) if end_session_time < datetime.now(): print("########################################") print(" Yoe, Increase \"end_section time\" please") print("########################################") exit() start_date = None end_date = None # # Defining up to 3 contracts in case Mean Reversing Strategies were used in the future # contract_1 = Contract() contract_1.symbol = tickers[0] contract_1.secType = "STK" contract_1.currency = "USD" contract_1.exchange = "SMART" contract_1.primaryExchange = "ISLAND" contract_2 = Contract() if len(tickers) > 1: contract_2.symbol = tickers[1] contract_2.secType = "STK" contract_2.currency = "USD" contract_2.exchange = "SMART" contract_2.primaryExchange = "ISLAND" contract_3 = Contract() if len(tickers) > 2: contract_3.symbol = tickers[2] contract_3.secType = "STK" contract_3.currency = "USD" contract_3.exchange = "SMART" contract_3.primaryExchange = "ISLAND" contract = [contract_1, contract_2, contract_3] # # Defining the Conection to TWS ###################################################### # current_directory = os.getcwd() app = conexion(tickers=tickers, port=7497, cliente=cliente, currentDir=current_directory) # devuelto en: currentTime # # Checking open positions on the market ############################################ # app.reqAccountUpdates(True, "DU931045") tiempo = datetime.now() continua = False while not continua: open_position = app.open_position if open_position[0] != None or datetime.now() > tiempo + timedelta( seconds=3): continua = True time.sleep(0.5) if open_position[0] == tickers[0]: print(" *******************************************************") print("") print(" There is an open possition for %s, please check in the " % tickers[0]) print(" market whether it is convenient to proced automatically") print("") print(" *******************************************************") app.reqAccountUpdates(False, "DU931045") # # Requesting real time data from the Market ########################################## # reqId = [None for i in range(len(tickers))] for i in range(len(tickers)): reqId[i] = app.nuevoId() app.reqMarketDataType(1) app.reqMktData(reqId[i], contract[i], genericTickList='', snapshot=False, regulatorySnapshot=False, mktDataOptions=[]) print("request Id: ", reqId[i]) # # Defining modules ################################################################### # price_handler = IBAPI_yoe(events_queue, init_tickers=tickers, app=app, reqId=reqId) # start_date = datetime.datetime(2015, 1, 1) # end_date = datetime.datetime(2016, 9, 30) # price_handler = IQFeedIntradayCsvBarPriceHandler( # csv_dir, events_queue, tickers, start_date=start_date # ) contract_dict = { contract_1.symbol: contract_1, contract_2.symbol: contract_2, contract_3.symbol: contract_3 } LiveCompl = LiveCompliance(config, tickers) # Use the ML Intraday Prediction Strategy model_pickle_file = current_directory + "/" + tickers[0] + "_Full_time.pkl" strategy = IntradayMachineLearningPredictionStrategy( tickers, events_queue, model_pickle_file, strat_set, open_position) execution_handler = IB_execution_yoe(events_queue, price_handler, compliance=LiveCompl, app=app, contract_dict=contract_dict, currentDir=current_directory, Id=reqId, strategy=strategy) # Use the Naive Position Sizer where # suggested quantities are followed position_sizer = NaivePositionSizer() # Use an example Risk Manager risk_manager = ExampleRiskManager() # Use the default Portfolio Handler portfolio_handler = PortfolioHandler(PriceParser.parse(initial_equity), events_queue, price_handler, position_sizer, risk_manager) title = [tickers[0] + "Machine Learning_Long_lags3"] # Use the Tearsheet Statistics statistics = TearsheetStatistics( config, portfolio_handler, title=title, periods=int(252 * 6.5 * 60) # Minutely periods ) # Set up the backtest backtest = TradingSession(config, strategy, tickers, initial_equity, start_date, end_date, events_queue, session_type="live", end_session_time=end_session_time, price_handler=price_handler, portfolio_handler=portfolio_handler, compliance=None, position_sizer=position_sizer, execution_handler=execution_handler, risk_manager=None, statistics=statistics, sentiment_handler=None, title=None, benchmark=None) results = backtest.start_trading(testing=testing) return results for i in range(len(tickers)): app.cancelMktData(i) app.disconnect() app.f.close()
def run(config, testing, tickers, csv_filepath, pklfile, start_date, end_date, lags, title, folder_name, model, return_win, percent_factor, salida): # Set up variables needed for backtest # title = [ # "Intraday AREX Machine Learning Prediction Strategy" # ] events_queue = queue.Queue() csv_dir = csv_filepath initial_equity = 30000.0 # Use DTN IQFeed Intraday Bar Price Handler # start_date = datetime.datetime(2016, 1, 1) # end_date = datetime.datetime(2014, 3, 11) # start_date = datetime.datetime(2013, 1, 1) # end_date = datetime.datetime(2014, 3, 11) price_handler = IQFeedIntradayCsvBarPriceHandler(csv_dir, events_queue, tickers, start_date, end_date) # Use the ML Intraday Prediction Strategy model_pickle_file = pklfile strategy = IntradayMachineLearningPredictionStrategy( tickers, events_queue, model_pickle_file, lags, model, return_win, percent_factor, salida) # Use the Naive Position Sizer where # suggested quantities are followed position_sizer = NaivePositionSizer() # Use an example Risk Manager risk_manager = ExampleRiskManager() # Use the default Portfolio Handler portfolio_handler = PortfolioHandler(PriceParser.parse(initial_equity), events_queue, price_handler, position_sizer, risk_manager) # Use the Tearsheet Statistics statistics = TearsheetStatistics( config, portfolio_handler, title=title, periods=int(252 * 6.5 * 60) # Minutely periods ) # Set up the backtest compliance = LiveCompliance(config, tickers) execution_handler = IBSimulatedExecutionHandler( events_queue=events_queue, price_handler=price_handler, compliance=compliance) backtest = TradingSession(config, strategy, tickers, initial_equity, start_date, end_date, events_queue, title=title, portfolio_handler=portfolio_handler, compliance=compliance, position_sizer=position_sizer, execution_handler=execution_handler, price_handler=price_handler, statistics=statistics) results = backtest.start_trading(testing=testing, folder_name=folder_name) return results