Example #1
0
    def outliers(self, id=None, *args, **kwargs):
        from qtools.lib.nstats.peaks import total_events_amplitude_vals
        from qtools.lib.mplot import plot_cluster_outliers, cleanup, render as plt_render

        qlwell = self.__qlwell_from_threshold_form(id)
        means0,stds0 = total_events_amplitude_vals(qlwell,0) 
        means1,stds1 = total_events_amplitude_vals(qlwell,1) 
        title = 'Outliers - Well:%s FAM:(Mean: %.0f, Stdev:%.0f) \n                   VIC/HEX:(Mean: %.0f, Stdev: %.0f)' % (c.well.well_name,means0,stds0,means1,stds1)

	peaks = qlwell.peaks
        fig = plot_cluster_outliers(title, peaks)
        response.content_type = 'image/png'
        imgdata = plt_render(fig, dpi=72)
        cleanup(fig)
        return imgdata
Example #2
0
def stats_for_qlp_well(well, compute_clusters=False, override_thresholds=None):
    """
    Return statistics about a QLWell object read from a QLP file.
    The QLWell object should have a populated `peaks` attribute (reading from QLBs won't work)

    For parameter explanations and return values, see :func:`stats_for_qlp_well`.
    """
    from pyqlb.nstats.peaks import cluster_1d, channel_amplitudes
    from pyqlb.nstats.well import accepted_peaks, above_min_amplitude_peaks, well_channel_sp_values, well_cluster_peaks
    from pyqlb.nstats.well import well_observed_positives_negatives, well_s2d_values, getClusters
    from pyqlb.nstats.well import high_flier_droplets, low_flier_droplets, singleRain_droplets, doubleRain_droplets, diagonal_scatter
    from numpy import mean as np_mean, std as np_std

    if not override_thresholds:
        override_thresholds = (None, None)

    statistics = well_statistics(well, override_thresholds=override_thresholds)
    accepted = len(accepted_peaks(well))
    num_above_min = len(above_min_amplitude_peaks(well))

    if num_above_min > 0 and accepted > 0:
        if well.sum_amplitude_bins:
            peaksets, boundaries, amps = revb_polydisperse_peaks(well, 0, threshold=override_thresholds[0])
            poly_peaks = sum([len(p) for p in peaksets])
            statistics[0].revb_polydispersity_pct = 100*float(poly_peaks)/num_above_min
        else:
            peaksets, boundaries, width_gates = polydisperse_peaks(well, 0, threshold=override_thresholds[0])
            poly_peaks = sum([len(p) for p in peaksets])
            statistics[0].revb_polydispersity_pct = 100*float(poly_peaks)/num_above_min
    else:
        statistics[0].revb_polydispersity_pct = 0

    s, p_plus, p, p_minus = well_channel_sp_values(well, 0, override_threshold=override_thresholds[0])
    statistics[0].s_value = s
    statistics[0].p_plus = p_plus
    statistics[0].p_plus_drops = int(p_plus*accepted) if p_plus is not None else None
    statistics[0].p = p
    statistics[0].p_drops = int(p*accepted) if p is not None else None
    statistics[0].p_minus = p_minus
    statistics[0].p_minus_drops = int(p_minus*accepted) if p_minus is not None else None

    if num_above_min > 0 and accepted > 0:
        if well.sum_amplitude_bins:
            peaksets, boundaries, amps = revb_polydisperse_peaks(well, 1, threshold=override_thresholds[1])
            poly_peaks = sum([len(p) for p in peaksets])
            statistics[1].revb_polydispersity_pct = 100*float(poly_peaks)/num_above_min
        else:
            peaksets, boundaries, width_gates = polydisperse_peaks(well, 1, threshold=override_thresholds[1])
            poly_peaks = sum([len(p) for p in peaksets])
            statistics[1].revb_polydispersity_pct = 100*float(poly_peaks)/num_above_min
    else:
        statistics[1].revb_polydispersity_pct = 0

    s, p_plus, p, p_minus = well_channel_sp_values(well, 1, override_threshold=override_thresholds[1])
    statistics[1].s_value = s
    statistics[1].p_plus = p_plus
    statistics[1].p_plus_drops = int(p_plus*accepted) if p_plus is not None else None
    statistics[1].p = p
    statistics[1].p_drops = int(p*accepted) if p is not None else None
    statistics[1].p_minus = p_minus
    statistics[1].p_minus_drops = int(p_minus*accepted) if p_minus is not None else None

    ## compute s2d plots
    s2d_vals = well_s2d_values( well, thresholds=override_thresholds)
    statistics[0].s2d_value = s2d_vals[0] if s2d_vals is not None else None
    statistics[1].s2d_value = s2d_vals[1] if s2d_vals is not None else None

    ## compute extra cluster metrics
    clusters = getClusters( well, override_thresholds )
    dscatter = diagonal_scatter( clusters )
    statistics.diagonal_scatter = dscatter[1] if dscatter is not None else None
    statistics.diagonal_scatter_pct  = dscatter[2] *100 if dscatter is not None else None
    for channel in [0,1]:
        high_fliers = high_flier_droplets( clusters, channel )
        statistics[channel].high_flier_value = high_fliers[1] if high_fliers is not None else None
        statistics[channel].high_flier_pct = high_fliers[2] * 100 if high_fliers is not None else None

        low_fliers  = low_flier_droplets( clusters, channel )
        statistics[channel].low_flier_value  = low_fliers[1] if low_fliers is not None else None
        statistics[channel].low_flier_pct    = low_fliers[2] * 100 if low_fliers is not None else None
        
        singleRain  = singleRain_droplets( clusters, channel )
        statistics[channel].single_rain_value  = singleRain[1] if singleRain is not None else None
        statistics[channel].single_rain_pct  = singleRain[2] * 100 if singleRain is not None else None
        
        doubleRain  = doubleRain_droplets( clusters, channel )
        statistics[channel].double_rain_value = doubleRain[1] if doubleRain is not None else None
        statistics[channel].double_rain_pct = doubleRain[2] * 100 if doubleRain is not None else None


    if compute_clusters:
        clusters = well_cluster_peaks(well, override_thresholds)
    else:
        clusters = {'positive_peaks': {'positive_peaks': [], 'negative_peaks': []},
                    'negative_peaks': {'positive_peaks': [], 'negative_peaks': []}}
 
    # cheap hack
    statistics.alg_version = "%s.%s/%s.%s" % (well.statistics.peak_alg_major_version,
                                              well.statistics.peak_alg_minor_version,
                                              well.statistics.quant_alg_major_version,
                                              well.statistics.quant_alg_minor_version)
    statistics.ref_copy_num = well.ref_copy_num
    statistics[0].decision_tree = well.channels[0].decision_tree_verbose
    statistics[1].decision_tree = well.channels[1].decision_tree_verbose
    # end cheap hack

    # SNR
    for chan in (0,1):
        if override_thresholds[chan]:
            # TODO add this to pyqlb.nstats.well instead
            pos, neg = cluster_1d(accepted_peaks(well), chan, override_thresholds[chan])
        else:
            pos, neg, unknown = well_observed_positives_negatives(well, chan)

        for attr, coll in (('positive_snr', pos),('negative_snr',neg)):
            if len(pos) > 0:
                amps = channel_amplitudes(coll, chan)
                amp_mean = np_mean(amps)
                amp_std = np_std(amps)
                if amp_std > 0:
                    setattr(statistics[chan], attr, amp_mean/amp_std)
                else:
                    setattr(statistics[chan], attr, 10000)
            else:
                setattr(statistics[chan], attr, 0)

    for channel in [0,1]:
        means,stds = total_events_amplitude_vals(well,channel) 
        statistics[channel].total_events_amplitude_mean = means if means is not None else None
        statistics[channel].total_events_amplitude_stdev = stds if stds is not None else None

    return statistics, clusters