Example #1
0
def barrierScore(xd, yd, pp, weights=None, thr=3e9):
    """ Calculate score for barrier model """
    ppq = pp.copy()
    # ppq[0]+=3.05
    ydatax = barrierModel(xd, ppq)
    sc = np.abs(ydatax - yd)
    scalefac = thr
    #sc=robustCost(sc, thr)
    sc = np.sqrt(robustCost(sc / scalefac, thr / scalefac, 'BZ0')) * scalefac
    if weights is not None:
        sc = sc * weights
    sc = np.linalg.norm(sc, ord=4) / sc.size
    return sc
Example #2
0
    def pat_one_ele_score(self, xd, yd, pp, weights=None, thr=2e9):
        """ Calculate score for pat one electron model 

        Args:
            xd (array): x coordinates of peaks in sensor signal
            yd (array): y coordinates of peaks in sensor signal
            pp (array): model parameters
        """
        ydatax = one_ele_pat_model(xd, pp)
        charge_change = np.abs(np.abs(pp[1]) * (xd - pp[0]) / np.sqrt((pp[1] * (xd - pp[0]))**2 + 4 * pp[2]**2))
        sc = np.abs(ydatax - yd) * charge_change
        scalefac = thr
        sc = np.sqrt(robustCost(sc / scalefac, thr / scalefac, 'BZ0')) * scalefac
        if weights is not None:
            sc = sc * weights
        sc = np.linalg.norm(sc, ord=4) / sc.size
        if pp[1] < 10:
            sc *= 10
        if pp[2] > 150:
            sc *= 10
        return sc
Example #3
0
    def pat_two_ele_score(self, xd, yd, pp, weights=None, thr=2e9):
        """ Calculate score for pat two electron model

        Args:
            xd (array): x coordinates of peaks in sensor signal
            yd (array): y coordinates of peaks in sensor signal
            pp (array): model parameters
        """
        ymodel = two_ele_pat_model(xd, pp)
        denom = np.sqrt((pp[1] * (xd - pp[0]))**2 + 8 * pp[2]**2)
        charge_changes = []
        charge_changes.append(1 / 2 * (1 + pp[1] * (xd - pp[0]) / denom))
        charge_changes.append(np.abs(pp[1] * (xd - pp[0]) / denom))
        charge_changes.append(1 / 2 * (1 - pp[1] * (xd - pp[0]) / denom))
        linesize = ymodel[0].shape[0]
        if self.branch_reduction is None or self.branch_reduction == 'minimum':
            sc = np.inf * np.ones(linesize)
            for idval, val in enumerate(self.even_branches):
                if val:
                    sc = np.minimum(sc, np.abs(ymodel[idval] - yd))
        elif self.branch_reduction == 'mean':
            sc = []
            for idval, val in enumerate(self.even_branches):
                if val:
                    sc.append(np.abs(ymodel[idval] - yd))
            sc = np.mean(np.array(sc), axis=1)
        else:
            raise NotImplementedError('branch_reduction %s not implemented' %
                                      self.branch_reduction)
        scalefac = thr
        sc = np.sqrt(robustCost(sc / scalefac, thr / scalefac,
                                'BZ0')) * scalefac
        if weights is not None:
            sc *= weights
        sc = np.linalg.norm(sc, ord=4) / sc.size
        if pp[1] < 10:
            sc *= 10000
        return sc
Example #4
0
 def test_robust_cost():
     x = np.array([0, 1, 2, 3, 4, 5])
     _ = pgeometry.robustCost(x, 2)
     _ = pgeometry.robustCost(x, 'auto')