# -*- coding: utf-8 -*- """ ============================= Plot Lag-CRP ============================= This example plots a Lag-CRP as described in Kahana et al (1996). Given the recall of a stimulus in position n, this plot shows the probability of recalling stimuli in neighboring stimulus positions (n+/-5). """ # Code source: Andrew Heusser # License: MIT #import import quail #load data egg = quail.load_example_data() #analysis analyzed_data = quail.analyze(egg, analysis='lagcrp', listgroup=['average'] * 8) #plot quail.plot(analyzed_data, title='Lag-CRP')
# -*- coding: utf-8 -*- """ ============================= Plot probability of first recall ============================= This example plots the probability of an item being recalled first given its list position. """ # Code source: Andrew Heusser # License: MIT # import import quail #load data egg = quail.load_example_data() # analysis analyzed_data = quail.analyze(egg, analysis='pfr', listgroup=['average'] * 8) # plot quail.plot(analyzed_data, title='Probability of First Recall')
""" ============================= Plot memory fingerprint ============================= This example plots a fingerprint. Briefly, a fingerprint can be described as a summary of how a subject organizes information with respect to the multiple features of the stimuli. In addition to presentation and recall data, a features object is passed to the Egg class. It is comprised of a dictionary for each presented stimulus that contains feature dimensions and values for each stimulus. """ # Code source: Andrew Heusser # License: MIT #import import quail #load data egg = quail.load_example_data() # analysis analyzed_data = quail.analyze(egg, analysis='fingerprint', listgroup=['average'] * 8) # plot quail.plot(analyzed_data, title='Memory Fingerprint')
# -*- coding: utf-8 -*- """ ============================= Plot free recall accuracy ============================= This example plots free recall accuracy for a single subject. """ # Code source: Andrew Heusser # License: MIT #import import quail #load data egg = quail.load_example_data() #analysis analyzed_data = quail.analyze(egg, analysis='accuracy', listgroup=['condition1']*4+['condition2']*4) #plot by list quail.plot(analyzed_data, plot_style='violin', title='Average Recall Accuracy')
# -*- coding: utf-8 -*- """ ============================= Plot serial position curve ============================= This example plots the probability of recall success as a function of serial position during stimulus encoding. """ # Code source: Andrew Heusser # License: MIT # import import quail #load data egg = quail.load_example_data() #analysis analyzed_data = quail.analyze(egg, analysis='spc', listgroup=['average'] * 8) #plot quail.plot(analyzed_data, title='Serial Position Curve')
# -*- coding: utf-8 -*- """ ============================= Plot temporal clustering ============================= This example plots temporal clustering, the extent to which subject tend to recall neighboring items sequentially. """ # Code source: Andrew Heusser # License: MIT # import import quail #load data egg = quail.load_example_data() #analysis analyzed_data = quail.analyze(egg, analysis='temporal', listgroup=['early'] * 4 + ['late'] * 4) #plot quail.plot(analyzed_data, title='Temporal Clustering')