Example #1
0
def only_local(option, f):

    knowledge = 0
    iterations_local = 50  # number of trials
    scenarios.generate_victim_positions_traces()
    scenarios.partial_knowledge_generation(knowledge)

    list_best_individuals = list()
    list_best_fitness = list()
    list_evolution_max = list()
    list_best_time = list()

    for i in range(0, iterations_local):
        list_drones = quality.init(
            global_variables.num_drones)  # random selection
        global_variables.partial = 1
        result_global = quality.evaluate(list_drones)
        global_variables.partial = 1  # we evaluate the hill climbing

        type_global = "Genetic Algorithm"
        if option == "Hill":
            type_local = "Hill Climbing"
            list_drones_climbing, records = local.hill_climbing(
                list_drones, result_global)
            list_best_individuals.append(list_drones_climbing)
            #list_best_time.append(best_time)
            q, = quality.evaluate(list_drones_climbing)
            list_best_fitness.append(q)
            list_evolution_max.append(records)

    length = len(list_best_fitness)
    mean = sum(list_best_fitness) / length
    sum2 = sum(x * x for x in list_best_fitness)
    std = abs(sum2 / length - mean**2)**0.5

    index = miscelleneous.find_max(list_best_fitness)

    f.write(type_local)
    f.write("\n")
    f.write("Results \n")
    f.write("Max, Min, Mean, Std \n")
    f.write(
        str(max(list_best_fitness)) + "," + str(min(list_best_fitness)) + "," +
        str(mean) + "," + str(std))
    f.write(str(list_best_fitness))
    plots.print_drones_data(list_best_individuals[index], f)
    plots.evolution_local(list_evolution_max[index], type_local)
    plots.positions(list_drones, list_best_individuals[index], type_global,
                    type_local)
Example #2
0
def hill_climbing(lista_drones, global_max):
    """ Hill climbing algorithm. It receives the list of drones and the global maximum"""

    #global partial
    #global_variables.partial = 1 # we evaluate hill climbing for the initial deployment problem
    global_variables.partial = 0
    records = []
    records.append(global_max)
    first_max = global_max
    max_list = copy.deepcopy(lista_drones)  # watch up
    max_speed = 10  # meters/seconds
    simulation_time = 50000  # seconds
    #choose_directions(lista_drones, max_speed) # here we selec the type of movement
    selected = choose_directions_single(lista_drones, max_speed)
    current_quality = 0.0
    prueba = lista_drones
    best_time = 0

    print("---------- START CLIMBING OPTIMIZATION ----------")

    for i in range(0, simulation_time):
        update_drones_positions(lista_drones, 0)
        #update_drones_positions_single(lista_drones, selected)
        current_quality = quality.evaluate(lista_drones)
        if (current_quality <= global_max):
            #selected= step_back_single(lista_drones, selected, max_speed)
            step_back(lista_drones, max_speed)
            #print("go back")
        else:
            print("----------------previous quality %f" % global_max)
            global_max = current_quality
            #records.append(global_max)
            prueba = copy.deepcopy(lista_drones)
            print("----------------new quality %f" % global_max)
            plots.print_drones_data(lista_drones, 0)
            best_time = i  # we update the time at which we find the best solution so far
            print("-----------------------------------------------")
            print("-----------------------------------------------")

    # we print some information about how the positions are updated.
    print("quality before hill climbing %f" % first_max)
    print("List of victims covered %s" %
          quality.calc_victims_covered(max_list))
    print("total number of victims covered %d" %
          len(quality.calc_victims_covered(max_list)))
    print("-------INITIAL POSITIONS----------------------")
    plots.print_drones_data(max_list, 0)
    print("----------------------------------------------")
    print("----------------------------------------------")

    print("final quality hill climbing %f" % global_max)
    print("List of victims covered %s" % quality.calc_victims_covered(prueba))
    print("total number of victims covered %d" %
          len(quality.calc_victims_covered(prueba)))
    print("-------FINAL POSITIONS----------------------")
    plots.print_drones_data(prueba, 0)
    print("----------------------------------------------")
    print("----------------------------------------------")
    return prueba, records
Example #3
0
def random_deployment():
    list_drones = quality.init(global_variables.num_drones)
    global_variables.partial = 0
    result, = quality.evaluate(list_drones)
    return list_drones, result
Example #4
0
def simple_grid():
    list_drones = quality.init_grid(global_variables.num_drones)
    global_variables.partial = 0
    result, = quality.evaluate(list_drones)
    return list_drones, result
Example #5
0
def simulated_annealing(lista_drones, global_max, deviation):
    """ Simulated annealing algorithm. It receives the list of drones and the global maximum"""

    max_speed = 10  # meters/seconds
    simulation_time = 10000  # seconds
    global_variables.partial = 0
    temperature = float(deviation) / 0.0953

    records = []
    records_positions = []
    records_probability = []
    records_temperature = []
    records_aux = []

    global_max2, = global_max
    first_max = global_max
    max_list = copy.deepcopy(lista_drones)  # watch up
    records.append(global_max2)
    records_positions.append(max_list)
    choose_directions(lista_drones, max_speed)

    print("---------- START SIMULATED ANNEALING OPTIMIZATION ----------")
    for i in range(0, simulation_time):
        update_drones_positions(lista_drones)
        current_quality, = quality.evaluate(lista_drones)
        if current_quality <= global_max2 and current_quality > 0:
            probability = calculate_annealing_probability(
                temperature, current_quality, global_max2)
            print(probability)
            records_probability.append(probability)
            #records_aux.append(aux)
            if (probability >=
                    random.random()):  # we should avoid non valid solutions
                print("----------------accepting a WORSE solution--------")
                print("----------------previous quality %f" % global_max2)
                global_max2 = current_quality
                records.append(global_max2)
                prueba = copy.deepcopy(lista_drones)
                records_positions.append(prueba)
                print("----------------new quality %f" % global_max2)
                plots.print_drones_data(lista_drones, 0)
                print("-----------------------------------------------")
                print("-----------------------------------------------")
            else:
                step_back(lista_drones, max_speed)
        else:
            if (current_quality > 0):
                print("----------------accepting a BETTER solution--------")
                print("----------------previous quality %f" % global_max2)
                global_max2 = current_quality
                prueba = copy.deepcopy(lista_drones)
                records.append(global_max2)
                records_positions.append(prueba)
                print("----------------new quality %f" % global_max2)
                plots.print_drones_data(prueba, 0)
                print("-----------------------------------------------")
                print("-----------------------------------------------")

        temperature = update_annealing_temperature(temperature, deviation,
                                                   simulation_time)
        records_temperature.append(temperature)
        print("temperature %f" % temperature)

    #plots.evolution_local(records_aux, "probability")
    index = miscelleneous.find_max(records)

    print("quality before simulated annealing %f" % first_max)
    print("List of victims covered %s" %
          quality.calc_victims_covered(max_list))
    print("total number of victims covered %d" %
          len(quality.calc_victims_covered(max_list)))
    print("-------INITIAL POSITIONS----------------------")
    plots.print_drones_data(max_list, 0)
    print("----------------------------------------------")
    print("----------------------------------------------")

    print("final quality simulated annealing %f" % records[index])
    print("List of victims covered %s" %
          quality.calc_victims_covered(records_positions[index]))
    print("total number of victims covered %d" %
          len(quality.calc_victims_covered(records_positions[index])))
    print("-------FINAL POSITIONS----------------------")
    plots.print_drones_data(records_positions[index], 0)
    print("----------------------------------------------")
    print("----------------------------------------------")
    return records_positions[index], records
Example #6
0
def tabu_search(lista_drones, global_max):
    """ Tabu search algorithm. It receives the list of drones and the global maximum"""

    #global partial
    global_variables.partial = 1
    records = []
    records.append(global_max)
    movement_list = []
    tabu_list = []  # store the positions that have already visited
    first_max = global_max  # we store the first maximum gloabal
    max_list = copy.deepcopy(
        lista_drones)  # make a copy of the original postions of the drones
    max_speed = 10  # meters/seconds
    simulation_time = 10000  # seconds
    choose_directions(lista_drones, max_speed)
    current_quality = 0.0
    repetido = 0

    print("---------- START TABU SEARCH OPTIMIZATION ----------")

    for i in range(0, simulation_time):
        update_drones_positions(lista_drones, 0)
        current_quality = quality.evaluate(lista_drones)
        current_positions = miscelleneous.get_positions(lista_drones)
        if current_positions in tabu_list:
            repetido = repetido + 1
            print("REPETIDOOOOOOOOOOOOOOOOOOOOOOOO")
        else:
            if (current_quality <= global_max):
                step_back(lista_drones, max_speed)
                #print("go back")
            else:
                print(current_positions)
                update_movements(lista_drones)
                movement_list.append(current_positions)
                print("----------------previous quality %f" % global_max)
                global_max = current_quality
                records.append(global_max)
                prueba = copy.deepcopy(lista_drones)
                print("----------------new quality %f" % global_max)
                plots.print_drones_data(lista_drones, 0)
                print("-----------------------------------------------")
                print("-----------------------------------------------")
        tabu_list.append(current_positions)

    print("repetido %d" % repetido)
    print("quality before tabu search %f" % first_max)
    print("List of victims covered %s" %
          quality.calc_victims_covered(max_list))
    print("total number of victims covered %d" %
          len(quality.calc_victims_covered(max_list)))
    print("-------INITIAL POSITIONS----------------------")
    plots.print_drones_data(max_list, 0)
    print("----------------------------------------------")
    print("----------------------------------------------")

    print("final quality tabu search %f" % global_max)
    print("List of victims covered %s" % quality.calc_victims_covered(prueba))
    print("total number of victims covered %d" %
          len(quality.calc_victims_covered(prueba)))
    print("-------FINAL POSITIONS----------------------")
    plots.print_drones_data(prueba, 0)
    print("----------------------------------------------")
    print("----------------------------------------------")
    plots.plot_movements(lista_drones)
    return prueba, records
Example #7
0
def global_plus_local(f):
    """ This function runs the whole approach global + local search """
    iterations_genetic = 1  # iterations genetic algorithm
    knowledge = 0.8  # level of knowledge
    list_best_individuals = list(
    )  # to store the best individual of each genetic algorithm run
    list_best_fitness = list(
    )  # to store the best fitness of the best individual of each run
    list_generations = list()  # to store the generations
    list_drones_climbing = list()
    list_evolution_max = list()
    type_global = "Genetic"
    type_local = "Hill Climbing"

    f.write(type_global)
    f.write("\n")
    scenarios.generate_victim_positions_traces()
    scenarios.partial_knowledge_generation(knowledge)

    for i in range(0, iterations_genetic):
        individual, fitness, generation, evol_max = genetic.genetic_algorithm(
            "global_plus_local", i, knowledge)
        list_best_individuals.append(individual)
        list_best_fitness.append(fitness)
        list_generations.append(generation)
        list_evolution_max.append(evol_max)

    length = len(list_best_fitness)
    mean = sum(list_best_fitness) / length
    sum2 = sum(x * x for x in list_best_fitness)
    std = abs(sum2 / length - mean**2)**0.5

    f.write("Results \n")
    f.write("Max, Min, Mean, Std \n")
    f.write(
        str(max(list_best_fitness)) + "," + str(min(list_best_fitness)) + "," +
        str(mean) + "," + str(std))
    f.write("\n")

    global_max = max(list_best_fitness)
    index = miscelleneous.find_max(list_best_fitness)

    plots.print_drones_data(list_best_individuals[index], f)

    # LOCAL
    f.write(type_local)
    f.write("\n")
    #list_dr = quality.init_modified(list_best_individuals[index], global_variables.num_drones) # To simulate different number of drones for the initial deployment and for the adaptation to the real conditions
    #list_drones_climbing, records = local.hill_climbing(list_dr, list_best_individuals[index].fitness.values)
    list_drones_climbing, records = local.hill_climbing(
        list_best_individuals[index],
        list_best_individuals[index].fitness.values)
    f.write("Results \n")
    f.write(str(quality.evaluate(list_drones_climbing)))
    plots.print_drones_data(list_drones_climbing, f)
    plots.positions(list_best_individuals[index], list_drones_climbing,
                    type_global, type_local)
    plots.evolution_local(records, type_local)
    plots.evolution_global(list_evolution_max[index], type_global)

    print("######### FIRST DEPLOYMENT STATISTICS ################")
    print("  Min %s" % min(list_best_fitness))
    print("  Max %s" % max(list_best_fitness))
    print("  Avg %s" % mean)
    print("  Std %s" % std)