time_axis = qr.TimeAxis(0.0, propagation_N_steps, propagation_dt) agg_el.diagonalize() # # Absorption Spectrum calculated by the pathway method # # initial conditions before excitation rho0 = agg_el.get_DensityMatrix(condition_type="thermal", temperature=0.0) # electronic Hamiltonian ham = agg_el.get_Hamiltonian() # first order Liouville pathways pthways = agg_el.liouville_pathways_1(lab=lab, ham=ham, etol=1.0e-5, verbose=0) # absorption spectrum calculator mac = qr.MockAbsSpectrumCalculator(time_axis, system=agg_el) mac.bootstrap(rwa=qr.convert(12200.0, "1/cm", "int"), shape="Gaussian") mac.set_pathways(pthways) # here we calculate the spectrum abs1 = mac.calculate() abs1.normalize2(norm=0.53) # # Absorption by standard method # try: abscalc = qr.load_parcel("../model/in/calcAbs.qrp") except: pass #
m4.set_transition_dephasing((0, 1), 1.0 / 200.0) # # Create the aggregate of the two molecules # agg2 = qr.Aggregate(molecules=[m3, m4]) # # Build the aggregate # agg2.build() # # Absorption Spectrum by pathway method # mac = qr.MockAbsSpectrumCalculator(time, system=agg2) mac.bootstrap(rwa=qr.convert(10000.0, "1/cm", "int"), shape="Gaussian", lab=lab) abs1 = mac.calculate(raw=False) abs1.normalize2() # # Plot the absorption spectrum # with qr.energy_units("1/cm"): abs1.plot(axis=[9000, 12000, 0.0, 1.01], color="r", show=False) mac.bootstrap(rwa=qr.convert(10000.0, "1/cm", "int"), shape="Voigt", lab=lab) abs2 = mac.calculate()
def run(omega, HR, dE, JJ, rate, E0, vib_loc="up", use_vib=True, detailed_balance=False, temperature=77.0, stype=qr.signal_REPH, save_eUt=False, t2_save_pathways=[], dname=None, trimer=None, disE=None): """Runs a complete set of simulations for a single set of parameters If disE is not None it tries to run averaging over Gaussian energetic disorder. """ if dname is None: dname = "sim_" + vib_loc use_trimer = trimer["useit"] rate_sp = trimer["rate"] # # PARAMETERS FROM INPUT FILE # dip1 = INP.dip1 # [1.5, 0.0, 0.0] dip2 = INP.dip2 # [-1.0, -1.0, 0.0] width = INP.feature_width # 100.0 width2 = INP.feature_width2 normalize_maps_to_maximu = False trim_maps = False units = "1/cm" with qr.energy_units(units): data_descr = "_dO="+str(dE)+"_omega="+str(omega)+ \ "_HR="+str(HR)+"_J="+str(JJ) if use_vib: sys_char = "_vib" else: sys_char = "_ele" data_ext = sys_char + ".png" obj_ext = sys_char + ".qrp" # parameters of the SP if use_trimer: E2 = trimer["E2"] epsa = (E0 + E2) / 2.0 DE = trimer["DE"] J2 = 0.5 * numpy.sqrt(((E0 - E2)**2) - (DE**2)) ESP2 = epsa + DE / 2.0 ESP1 = epsa - DE / 2.0 # # Model system is a dimer of molecules # with qr.energy_units("1/cm"): if not use_trimer: if disE is not None: mol1 = qr.Molecule([0.0, E0 + disE[0]]) mol2 = qr.Molecule([0.0, E0 + dE + disE[1]]) print("Monomer 1 energy:", E0 + disE[0], "1/cm") print("Monomer 2 energy:", E0 + dE + disE[1], "1/cm") else: mol1 = qr.Molecule([0.0, E0]) mol2 = qr.Molecule([0.0, E0 + dE]) print("Monomer 1 energy:", E0, "1/cm") print("Monomer 2 energy:", E0 + dE, "1/cm") else: if disE is not None: mol1 = qr.Molecule([0.0, ESP2 + disE[0]]) mol2 = qr.Molecule([0.0, E0 + dE + disE[1]]) print("Monomer 1 (SP_high) energy:", ESP2 + disE[0], "1/cm") print("Monomer 2 (B) energy:", E0 + dE + disE[1], "1/cm") else: mol1 = qr.Molecule([0.0, ESP2]) mol2 = qr.Molecule([0.0, E0 + dE]) print("Monomer 1 (SP_high) energy:", ESP2, "1/cm") print("Monomer 2 (B) energy:", E0 + dE, "1/cm") if disE is not None: mol3 = qr.Molecule([0.0, ESP1 + disE[2]]) print("Monomer 3 (SP_low) energy:", ESP1 + disE[2], "1/cm") else: mol3 = qr.Molecule([0.0, ESP1]) print("Monomer 3 (SP_low) energy:", ESP1, "1/cm") mol3.set_transition_width((0, 1), width2) mol3.set_dipole(0, 1, trimer["dipsp"]) mol1.set_transition_width((0, 1), width2) mol1.set_dipole(0, 1, dip1) mol2.set_transition_width((0, 1), width) mol2.set_dipole(0, 1, dip2) if use_trimer: agg = qr.Aggregate([mol1, mol2, mol3]) else: agg = qr.Aggregate([mol1, mol2]) if use_trimer: with qr.energy_units("1/cm"): agg.set_resonance_coupling(0, 1, JJ) print("B - SP_high coupling:", JJ, "1/cm") agg.set_resonance_coupling(0, 2, J2) print("SP coupling:", J2, "1/cm") else: with qr.energy_units("1/cm"): agg.set_resonance_coupling(0, 1, JJ) # # Electronic only aggregate # agg_el = agg.deepcopy() # # if nuclear vibrations are to be added, do it here # if use_vib: with qr.energy_units("1/cm"): mod1 = qr.Mode(omega) mod2 = qr.Mode(omega) if vib_loc == "down": set_vib = [True, False] elif vib_loc == "up": set_vib = [False, True] elif vib_loc == "both": set_vib = [True, True] else: raise Exception("Unknown location of the vibrations") if set_vib[0]: print("Vibrations set for SP_high molecule") mol1.add_Mode(mod1) mod1.set_nmax(0, INP.vibmode["no_g_vib"]) mod1.set_nmax(1, INP.vibmode["no_e_vib"]) mod1.set_HR(1, HR) if set_vib[1]: print("Vibrations set for B molecule") mol2.add_Mode(mod2) mod2.set_nmax(0, INP.vibmode["no_g_vib"]) mod2.set_nmax(1, INP.vibmode["no_e_vib"]) mod2.set_HR(1, HR) # # Before we build the aggregate, we make its copy to have an unbuilt version # agg3 = agg.deepcopy() aggA = agg.deepcopy() # # here we build the complete aggregate and its electronic only version # agg.build(mult=1) agg_el.build(mult=1) aggA.build(mult=1) # total Hamiltonian HH = agg.get_Hamiltonian() # electronic Hamiltonian He = agg_el.get_Hamiltonian() # # Laboratory setup # lab = qr.LabSetup() lab.set_polarizations(pulse_polarizations=[X, X, X], detection_polarization=X) # # Time axis for the calculation of excited state evolution # t2_N_steps = INP.t2_N_steps t2_time_step = INP.t2_time_step time2 = qr.TimeAxis(0.0, t2_N_steps, t2_time_step) # # Containers for 2D maps with positive and negative frequencies # cont_p = qr.TwoDResponseContainer(t2axis=time2) cont_m = qr.TwoDResponseContainer(t2axis=time2) cont_tot = qr.TwoDResponseContainer(t2axis=time2) # # spectra will be indexed by the times in the time axis `time2` # cont_p.use_indexing_type(time2) cont_m.use_indexing_type(time2) cont_tot.use_indexing_type(time2) # # We define two-time axes, which will be FFTed and will define # the omega_1 and omega_3 axes of the 2D spectrum # t1_N_steps = INP.t1_N_steps t1_time_step = INP.t1_time_step t3_N_steps = INP.t3_N_steps t3_time_step = INP.t3_time_step t1axis = qr.TimeAxis(0.0, t1_N_steps, t1_time_step) t3axis = qr.TimeAxis(0.0, t3_N_steps, t3_time_step) # # This calculator calculated 2D spectra from the effective width # msc = qr.MockTwoDResponseCalculator(t1axis, time2, t3axis) with qr.energy_units("1/cm"): msc.bootstrap(rwa=E0, shape="Gaussian") # # System-bath interaction including vibrational states # operators = [] rates = [] print("Relaxation rates: ", rate, rate_sp, "1/fs") with qr.eigenbasis_of(He): if use_trimer: if He.data[3, 3] < He.data[2, 2]: Exception("Electronic states not orderred!") operators.append(qr.qm.ProjectionOperator(2, 3, dim=He.dim)) with qr.energy_units("1/cm"): print("2 <- 3 : energies = ", He.data[2, 2], He.data[3, 3], "1/cm") rates.append(rate) print("Transfer time 2 <- 3:", 1.0 / rate, "fs") if He.data[2, 2] < He.data[1, 1]: Exception("Electronic states not orderred!") operators.append(qr.qm.ProjectionOperator(1, 2, dim=He.dim)) with qr.energy_units("1/cm"): print("1 <- 2 : energies = ", He.data[1, 1], He.data[2, 2], "1/cm") rates.append(rate_sp) print("Transfer time 1 <- 2", 1.0 / rate_sp, "fs") else: if He.data[2, 2] < He.data[1, 1]: Exception("Electronic states not orderred!") operators.append(qr.qm.ProjectionOperator(1, 2, dim=He.dim)) with qr.energy_units("1/cm"): print("1 <- 2 : energies = ", He.data[1, 1], He.data[2, 2], "1/cm") rates.append(rate_sp) print("Transfer time 1 <- 2", 1.0 / rate, "fs") # include detailed balace if detailed_balance: if use_trimer: with qr.eigenbasis_of(He): T = temperature #77.0 Den = (He.data[3, 3] - He.data[2, 2]) / (kB_int * T) operators.append(qr.qm.ProjectionOperator(3, 2, dim=He.dim)) thermal_fac = numpy.exp(-Den) rates.append(rate * thermal_fac) Den = (He.data[2, 2] - He.data[1, 1]) / (kB_int * T) operators.append(qr.qm.ProjectionOperator(2, 1, dim=He.dim)) thermal_fac = numpy.exp(-Den) rates.append(rate_sp * thermal_fac) else: with qr.eigenbasis_of(He): T = temperature #77.0 Den = (He.data[2, 2] - He.data[1, 1]) / (kB_int * T) operators.append(qr.qm.ProjectionOperator(2, 1, dim=He.dim)) thermal_fac = numpy.exp(-Den) rates.append(rate * thermal_fac) sbi = qr.qm.SystemBathInteraction(sys_operators=operators, rates=rates) sbi.set_system(agg) # # Lindblad form for relaxation # LF = qr.qm.ElectronicLindbladForm(HH, sbi, as_operators=True) # # Pure dephasing # p_deph = qr.qm.ElectronicPureDephasing(agg, dtype="Gaussian") # we simplify calculations by converting dephasing to # corresponding Lorentzian form p_deph.convert_to("Lorentzian") eUt = qr.qm.EvolutionSuperOperator(time2, HH, relt=LF, pdeph=p_deph, mode="all") eUt.set_dense_dt(INP.fine_splitting) print("---") # # We calculate evolution superoperator # eUt.calculate(show_progress=False) # save the evolution operator if save_eUt: eut_name = os.path.join( dname, "eUt" + "_omega2=" + str(omega) + data_descr + obj_ext) eUt.save(eut_name) # # Prepare aggregate with all states (including 2-EX band) # agg3.build(mult=2) agg3.diagonalize() agg_el.diagonalize() print("") print("Square of the transition dipoles") print(agg_el.D2) print("") print("---") # # calculation of absorption spectrum # time1 = qr.TimeAxis(0.0, 1000, 5.0) absc = qr.MockAbsSpectrumCalculator(time1, system=aggA) with qr.energy_units("1/cm"): absc.bootstrap(rwa=E0) spctrm = absc.calculate() spctrm.normalize2() with qr.energy_units("1/cm"): spctrm.plot(show=False, axis=[10500.0, 13500.0, 0.0, 1.1]) spctrm.savefig(os.path.join(dname, "abs.png")) spctrm.save_data(os.path.join(dname, "abs.dat")) pways = dict() olow_cm = omega - INP.omega_uncertainty / 2.0 ohigh_cm = omega + INP.omega_uncertainty / 2.0 olow = qr.convert(olow_cm, "1/cm", "int") ohigh = qr.convert(ohigh_cm, "1/cm", "int") for t2 in time2.data: # this could save some memory of pathways become too big pways = dict() print("T2 =", t2, "fs (of T2_max =", time2.max, "fs)") twod = msc.calculate_one_system(t2, agg3, eUt, lab, pways=pways, dtol=1.0e-12, selection=[["omega2", [olow, ohigh]]]) pws = pways[str(t2)] npa = len(pws) has_R = False has_NR = False for pw in pws: if pw.pathway_type == "NR": has_NR = True elif pw.pathway_type == "R": has_R = True if t2 in t2_save_pathways: pws_name = os.path.join( dname, "pws_t2=" + str(t2) + "_omega2=" + str(omega) + data_descr + obj_ext) qr.save_parcel(pways[str(t2)], pws_name) cont_p.set_spectrum(twod) twod = msc.calculate_one_system(t2, agg3, eUt, lab, pways=pways, dtol=1.0e-12, selection=[["omega2", [-ohigh, -olow]]]) pws = pways[str(t2)] npa = len(pws) #print(" m:", npa) has_R = False has_NR = False for pw in pws: if pw.pathway_type == "NR": has_NR = True elif pw.pathway_type == "R": has_R = True #print(" R:", has_R, ", NR:", has_NR) if t2 in t2_save_pathways: pws_name = os.path.join( dname, "pws_t2=" + str(t2) + "_omega2=" + str(-omega) + data_descr + obj_ext) qr.save_parcel(pways[str(t2)], pws_name) cont_m.set_spectrum(twod) # calculation without pre-selecting pathways twod = msc.calculate_one_system(t2, agg3, eUt, lab, pways=pways, dtol=1.0e-12) cont_tot.set_spectrum(twod) # saving total spectrum to a directory for further analysis try: saveit = INP.total_spectrum["save_it"] except: saveit = False if saveit: try: dform = INP.total_spectrum["data_format"] except: dform = "dat" try: stp = INP.total_spectrum["spectra_type"] if stp == "TOTL": stype = qr.signal_TOTL elif stp == "REPH": stype = qr.signal_REPH elif stp == "NONR": stype = qr.signal_NONR else: raise Exception("Wrong signal type") except: stype = qr.signal_REPH save_spectra(cont_tot, ext=dform, dir=dname, stype=stype) # # Save aggregate when a single calculation is done # if save_eUt: fname = os.path.join(dname, "aggregate.qrp") agg3.save(fname) # # Window function for subsequenty FFT # window = func.Tukey(time2, r=INP.tukey_window_r, sym=False) # # FFT with the window function # # Specify REPH, NONR or `total` to get different types of spectra # print("Calculating FFT of the 2D maps") #fcont = cont.fft(window=window, dtype=stype) #, dpart="real", offset=0.0) fcont_p_re = cont_p.fft(window=window, dtype=qr.signal_REPH) fcont_p_nr = cont_p.fft(window=window, dtype=qr.signal_NONR) fcont_p_to = cont_p.fft(window=window, dtype=qr.signal_TOTL) if normalize_maps_to_maximu: fcont_p_re.normalize2(dpart=qr.part_ABS) fcont_p_nr.normalize2(dpart=qr.part_ABS) fcont_p_to.normalize2(dpart=qr.part_ABS) fcont_m_re = cont_m.fft(window=window, dtype=qr.signal_REPH) fcont_m_nr = cont_m.fft(window=window, dtype=qr.signal_NONR) fcont_m_to = cont_m.fft(window=window, dtype=qr.signal_TOTL) if normalize_maps_to_maximu: fcont_m_re.normalize2(dpart=qr.part_ABS) fcont_m_nr.normalize2(dpart=qr.part_ABS) fcont_m_to.normalize2(dpart=qr.part_ABS) if trim_maps: twin = INP.trim_maps_to with qr.energy_units("1/cm"): fcont_p_re.trimall_to(window=twin) fcont_p_nr.trimall_to(window=twin) fcont_p_to.trimall_to(window=twin) show_omega = omega with qr.frequency_units("1/cm"): sp1_p_re, show_Npoint1 = fcont_p_re.get_nearest(show_omega) sp2_p_re, show_Npoint2 = fcont_p_re.get_nearest(-show_omega) sp1_p_nr, show_Npoint1 = fcont_p_nr.get_nearest(show_omega) sp2_p_nr, show_Npoint2 = fcont_p_nr.get_nearest(-show_omega) sp1_p_to, show_Npoint1 = fcont_p_to.get_nearest(show_omega) sp2_p_to, show_Npoint2 = fcont_p_to.get_nearest(-show_omega) sp1_m_re, show_Npoint1 = fcont_m_re.get_nearest(show_omega) sp2_m_re, show_Npoint2 = fcont_m_re.get_nearest(-show_omega) sp1_m_nr, show_Npoint1 = fcont_m_nr.get_nearest(show_omega) sp2_m_nr, show_Npoint2 = fcont_m_nr.get_nearest(-show_omega) sp1_m_to, show_Npoint1 = fcont_m_to.get_nearest(show_omega) sp2_m_to, show_Npoint2 = fcont_m_to.get_nearest(-show_omega) sstm = platform.system() #print(sstm) if sstm != "Windows": import resource memo = resource.getrusage( resource.RUSAGE_SELF).ru_maxrss / (1024 * 1024) print("Memory usage: ", memo, "in MB") return (sp1_p_re, sp1_p_nr, sp2_m_re, sp2_m_nr)
# setting system bath interaction to provide lineshape with qr.energy_units("1/cm"): mol.set_transition_width((0, 1), width) # building aggregate agg.build() HH = agg.get_Hamiltonian() # check the aggregate print(agg) # # calculation of absorption spectrum # time1 = qr.TimeAxis(0.0, 1000, 5.0) absc = qr.MockAbsSpectrumCalculator(time1, system=agg) with qr.energy_units("1/cm"): absc.bootstrap(rwa=E0) spctrm = absc.calculate() spctrm.normalize2() with qr.energy_units("1/cm"): spctrm.plot(show=False, axis=[9000.0, 13000.0, 0.0, 1.1]) spctrm.savefig("abs.png") # # calculation of 2D spectrum # time2 = qr.TimeAxis(0.0, 10, 10.0) time3 = qr.TimeAxis(0.0, time1.length, time1.step)
# absorption from effective theory from quantarhei import LabSetup from quantarhei.utils.vectors import X, Y, Z lab = LabSetup() lab.set_polarizations(pulse_polarizations=[X, X, X], detection_polarization=X) agg_eff.diagonalize() print("\nEffetive model exciation energies:") print("Energies in 1/cm:") N1 = agg_eff.nmono print([qr.convert(agg_eff.HH[i, i], "int", "1/cm") for i in range(1, N1 + 1)]) print("") mabsc = qr.MockAbsSpectrumCalculator(time, system=agg_eff) rho0 = agg_eff.get_DensityMatrix(condition_type="thermal", temperature=0.0) ham = agg_eff.get_Hamiltonian() pthways = agg_eff.liouville_pathways_1(lab=lab, ham=ham, etol=1.0e-5, verbose=0) mabsc.bootstrap(rwa=qr.convert(10000.0, "1/cm", "int"), shape="Gaussian") mabsc.set_pathways(pthways) abs1 = mabsc.calculate(raw=False) abs1.normalize2()