def forward(self, x):
        x = quantize_activations_gemm_A(x, self.act_scale[0])
        residual = x

        out1 = self.conv1(x)
        conv1_weight, conv1_scale = quantize_weight_gemm_S(self.conv1.weight)
        conv1_bias = quantize_bias_gemm(
            self.conv1.bias) / (conv1_scale * self.bias_scale[0])
        out = F.conv2d(x, conv1_weight, conv1_bias) * conv1_scale
        out = self.relu1(out)
        out = out * self.act_scale[0]

        out = quantize_activations_gemm_A(out, self.act_scale[1])
        out2 = self.conv2(out)
        conv2_weight, conv2_scale = quantize_weight_gemm_S(self.conv2.weight)
        conv2_bias = quantize_bias_gemm(
            self.conv2.bias) / (conv2_scale * self.bias_scale[1])
        out = F.conv2d(
            out, conv2_weight, conv2_bias, stride=self.stride,
            padding=1) * conv2_scale
        out = self.relu2(out)
        out = out * self.act_scale[1]

        out = quantize_activations_gemm_A(out, self.act_scale[2])
        out3 = self.conv3(out)
        conv3_weight, conv3_scale = quantize_weight_gemm_S(self.conv3.weight)
        conv3_bias = quantize_bias_gemm(
            self.conv3.bias) / (conv2_scale * self.bias_scale[2])
        out = F.conv2d(out, conv3_weight, conv3_bias, padding=1) * conv3_scale
        out = out * self.act_scale[2]

        out4 = self.shortcut(residual)
        if self.downsample:
            short_weight, short_scale = quantize_weight_gemm_S(
                self.shortcut[0].weight)
            short_bias = quantize_bias_gemm(
                self.shortcut[0].bias) / (short_scale * self.act_scale[0])
            residual = F.conv2d(
                residual, short_weight, short_bias,
                stride=self.stride) * short_scale
            residual = residual * self.act_scale[0]

        out += residual
        out = self.relu(out)

        return out
Example #2
0
    def forward(self, x):
        x1 = quantize_activations_gemm_A(x, self.act_scale)
        out = self.conv(x1)
        out = out * self.act_scale
        out = self.bn(out)
        # out = quantize_activations_gemm_A(out, self.act_scale)
        # out = out*self.act_scale
        out = self.relu(out)

        return out
Example #3
0
    def forward(self, x):
        x1 = quantize_activations_gemm_A(x, self.act_scale)
        out1 = self.conv(x1)
        conv_weight, conv_scale = quantize_weight_gemm_S(self.conv.weight)
        conv_bias = quantize_bias_gemm(self.conv.bias/(conv_scale*self.bias_scale))
        h = x.size()[-1]
        bias1 = conv_bias.repeat(h, h, 1)
        bias = bias1.transpose(0, 2)
        out = (F.conv2d(x1, conv_weight, stride=1, padding=1) + bias)*conv_scale
        out = self.relu(out)
        # out = quantize_activations_gemm_B(out)
        out = out*self.act_scale
        # out = quantize_activations_gemm(out)

        return out
    def forward(self, x):

        x = quantize_activations_gemm_A(x, self.scale)
        x1 = self.conv1(x)
        conv1_weight, conv1_scale = quantize_weight_gemm_S(self.conv1.weight)
        conv1_bias = quantize_bias_gemm(self.conv1.bias) / conv1_scale
        x = F.conv2d(x, conv1_weight, conv1_bias, stride=1,
                     padding=1) * conv1_scale
        x = self.relu1(x)
        x = x * self.scale

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = F.avg_pool2d(x, 4)
        x = x.view(x.size(0), -1)
        x = self.linear(x)

        return x