def __init__(self, in_planes, planes, stride=1): super(Bottleneck, self).__init__() self.conv1 = QWAConv2D(in_planes, planes, kernel_size=1, bias=True) self.conv2 = QWAConv2D(planes, planes, kernel_size=3, stride=stride, padding=1, bias=True) self.conv3 = QWAConv2D(planes, planes * 4, kernel_size=1, bias=True) self.relu = nn.ReLU6(inplace=True) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion * planes: self.downsample = True self.shortcut = nn.Sequential( QWAConv2D(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=True)) else: self.downsample = False self.stride = stride
def __init__(self, inplanes, planes, stride=1, downsample=None): super(Bottleneck, self).__init__() self.conv1 = QWAConv2D(inplanes, planes, kernel_size=1, bias=True) self.conv2 = QWAConv2D(planes, planes, kernel_size=3, stride=stride, padding=1, bias=True) self.conv3 = QWAConv2D(planes, planes * 4, kernel_size=1, bias=True) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride
def conv3x3(in_planes, out_planes, stride=1): """3x3 convolution with padding""" return QWAConv2D(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
def make_layers(cfg, batch_norm=False): layers = [] in_channels = 3 for v in cfg: if v == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: conv2d = QWAConv2D(in_channels, v, kernel_size=3, padding=1) if batch_norm: layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU6(inplace=True)] else: layers += [conv2d, nn.ReLU6(inplace=True)] in_channels = v return nn.Sequential(*layers)
def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( QWAConv2D(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=True), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers)
def __init__(self, in_planes, planes, stride=1): super(BasicBlock, self).__init__() self.conv1 = conv3x3(in_planes, planes, stride) self.relu = nn.ReLU6(inplace=True) self.conv2 = conv3x3(planes, planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion * planes: self.downsample = True self.shortcut = nn.Sequential( QWAConv2D(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=True)) else: self.downsample = False self.stride = stride