Example #1
0
def save_dataview():
    # total 130 seconds
    
    ds = RemoteDataService()
    dv = DataView()
    
    props = {'start_date': 20141114, 'end_date': 20170327, 'universe': '000300.SH',
             # 'symbol': 'rb1710.SHF,rb1801.SHF',
             'fields': ('open,high,low,close,vwap,volume,turnover,'
                        # + 'pb,net_assets,'
                        + 'total_oper_rev,oper_exp,tot_profit,int_income'
                        ),
             'freq': 1}
    
    dv.init_from_config(props, ds)
    dv.prepare_data()
    
    factor_formula = '-1 * Rank(Ts_Max(Delta(vwap, 7), 11))'  # GTJA
    factor_name = 'gtja'
    dv.add_formula(factor_name, factor_formula)
    dv.add_formula('eps_ret_wrong', 'Return(eps, 3)', is_quarterly=False)
    tmp = dv.get_ts('eps_ret_wrong')
    dv.add_formula('eps_ret', 'Return(eps, 3)', is_quarterly=True)
    tmp = dv.get_ts('eps_ret')
    
    
    dv.add_formula('look_ahead', 'Delay(Return(close_adj, 5), -5)')
    dv.add_formula('ret1', 'Return(close_adj, 1)')
    dv.add_formula('ret20', 'Delay(Return(close_adj, 20), -20)')
    
    dv.save_dataview(folder_path=fileio.join_relative_path('../output/prepared'))
def test_double_ma():
    prop_file_path = fileio.join_relative_path("etc/backtest.json")
    print prop_file_path
    prop_file = open(prop_file_path, 'r')

    props = json.load(prop_file)

    enum_props = {'bar_type': common.QUOTE_TYPE}
    for k, v in enum_props.iteritems():
        props[k] = v.to_enum(props[k])

    # strategy   = CtaStrategy()
    strategy = DoubleMaStrategy()
    gateway = BarSimulatorGateway()
    data_service = RemoteDataService()

    context = model.Context()
    context.register_data_api(data_service)
    context.register_gateway(gateway)
    context.register_trade_api(gateway)

    backtest = EventBacktestInstance()
    backtest.init_from_config(props, strategy, context=context)

    # backtest.run()
    backtest.run()
    report = backtest.generate_report()
def test_alpha_strategy():
    gateway = DailyStockSimGateway()
    remote_data_service = RemoteDataService()

    prop_file_path = fileio.join_relative_path('etc', 'alpha.json')
    props = read_props(prop_file_path)
    """
    props = {
        "benchmark": "000300.SH",
        "universe": "600026.SH,600027.SH,600028.SH,600029.SH,600030.SH,600031.SH",
    
        "period": "week",
        "days_delay": 2,
    
        "init_balance": 1e7,
        "position_ratio": 0.7,
    
        "start_date": 20120101,
        "end_date": 20170601,
        }

    """

    remote_data_service.init_from_config(props)
    remote_data_service.initialize()
    gateway.init_from_config(props)

    context = model.Context()
    context.register_data_api(remote_data_service)
    context.register_gateway(gateway)
    context.register_trade_api(gateway)

    risk_model = model.FactorRiskModel()
    signal_model = model.FactorRevenueModel()
    cost_model = model.SimpleCostModel()

    risk_model.register_context(context)
    signal_model.register_context(context)
    cost_model.register_context(context)

    signal_model.register_func('pb_factor', pb_factor)
    signal_model.activate_func({'pb_factor': {'coef': 3.27}})
    cost_model.register_func('my_commission', my_commission)
    cost_model.activate_func({'my_commission': {'myrate': 1e-2}})

    strategy = DemoAlphaStrategy(risk_model, signal_model, cost_model)
    # strategy.register_context(context)
    # strategy.active_pc_method = 'equal_weight'
    strategy.active_pc_method = 'mc'

    backtest = AlphaBacktestInstance()
    backtest.init_from_config(props, strategy, context=context)

    backtest.run_alpha()

    backtest.save_results('../output/')
Example #4
0
def test_output():
    static_folder = fileio.join_relative_path('backtest/analyze/static')

    r = Report({'mytitle': 'Test Title', 'mytable': 'Hello World!'},
               source_dir=static_folder,
               template_fn='test_template.html',
               css_fn='blueprint.css',
               out_folder='../output')
    r.generate_html()
    r.output_html()
    r.output_pdf()
Example #5
0
def create_turnover_tear_sheet(factor_data, output_format='plot'):
    """
    Creates a tear sheet for analyzing the turnover properties of a factor.

    Parameters
    ----------
    factor_data : pd.DataFrame - MultiIndex
        A MultiIndex DataFrame indexed by date (level 0) and asset (level 1),
        containing the values for a single alpha factor, forward returns for
        each period, the factor quantile/bin that factor value belongs to, and
        (optionally) the group the asset belongs to.
    """

    turnover_periods = utils.get_forward_returns_columns(factor_data.columns)
    quantile_factor = factor_data['factor_quantile']

    quantile_turnover = \
        {p: pd.concat([perf.quantile_turnover(quantile_factor, q, p)
                       for q in range(1, int(quantile_factor.max()) + 1)],
                      axis=1)
            for p in turnover_periods}

    autocorrelation = pd.concat(
        [perf.factor_rank_autocorrelation(factor_data, period) for period in
         turnover_periods], axis=1)

    if output_format:
        plotting.plot_turnover_table(autocorrelation, quantile_turnover)

        fr_cols = len(turnover_periods)
        columns_wide = 1
        rows_when_wide = (((fr_cols - 1) // 1) + 1)
        vertical_sections = fr_cols + 3 * rows_when_wide + 2 * fr_cols
        gf = GridFigure(rows=vertical_sections, cols=columns_wide)

        for period in sorted(quantile_turnover.keys()):
            plotting.plot_top_bottom_quantile_turnover(quantile_turnover[period],
                                                       period=period,
                                                       ax=gf.next_row())

        for period in autocorrelation:
            plotting.plot_factor_rank_auto_correlation(autocorrelation[period],
                                                       period=period,
                                                       ax=gf.next_row())

    if output_format == 'plot':
        plt.show()
        # gf.fig.show()
    elif output_format == 'pdf':
        from quantos.util import fileio
        gf.fig.savefig(fileio.join_relative_path('..', 'output', 'turnover_tear_sheet.pdf'))
    elif output_format == '':
        pass
def test_alpha_strategy_dataview():
    dv = DataView()

    fullpath = fileio.join_relative_path(
        '../output/prepared/20141114_20170827_freq=1D')
    dv.load_dataview(folder=fullpath)

    props = {
        "benchmark": "000300.SH",
        # "symbol": ','.join(dv.symbol),
        "universe": ','.join(dv.symbol),
        "start_date": dv.start_date,
        "end_date": dv.end_date,
        "period": "month",
        "days_delay": 0,
        "init_balance": 1e9,
        "position_ratio": 0.7,
    }

    gateway = DailyStockSimGateway()
    gateway.init_from_config(props)

    context = model.Context()
    context.register_gateway(gateway)
    context.register_trade_api(gateway)
    context.register_dataview(dv)

    risk_model = model.FactorRiskModel()
    signal_model = model.FactorRevenueModel_dv()
    cost_model = model.SimpleCostModel()

    risk_model.register_context(context)
    signal_model.register_context(context)
    cost_model.register_context(context)

    signal_model.register_func('gtja', gtja_factor_dataview)
    signal_model.activate_func({'gtja': {}})
    cost_model.register_func('my_commission', my_commission)
    cost_model.activate_func({'my_commission': {'myrate': 1e-2}})

    strategy = DemoAlphaStrategy(risk_model, signal_model, cost_model)
    # strategy.active_pc_method = 'equal_weight'
    # strategy.active_pc_method = 'mc'
    strategy.active_pc_method = 'factor_value_weight'

    bt = AlphaBacktestInstance_dv()
    bt.init_from_config(props, strategy, context=context)

    bt.run_alpha()

    bt.save_results('../output/')
Example #7
0
def test_backtest_analyze():
    ta = ana.AlphaAnalyzer()
    data_service = RemoteDataService()

    out_folder = fileio.join_relative_path("../output")

    ta.initialize(data_service, out_folder)

    print "process trades..."
    ta.process_trades()
    print "get daily stats..."
    ta.get_daily()
    print "calc strategy return..."
    ta.get_returns()
    # print "get position change..."
    # ta.get_pos_change_info()

    selected_sec = []  # list(ta.universe)[:3]
    if len(selected_sec) > 0:
        print "Plot single securities PnL"
        for symbol in selected_sec:
            df_daily = ta.daily.get(symbol, None)
            if df_daily is not None:
                ana.plot_trades(df_daily,
                                symbol=symbol,
                                save_folder=out_folder)

    print "Plot strategy PnL..."
    ta.plot_pnl(out_folder)

    print "generate report..."
    static_folder = fileio.join_relative_path("backtest/analyze/static")
    ta.gen_report(source_dir=static_folder,
                  template_fn='report_template.html',
                  css_fn='blueprint.css',
                  out_folder=out_folder,
                  selected=selected_sec)
Example #8
0
    def __init__(self):
        DataService.__init__(self)

        dic = fileio.read_json(
            fileio.join_relative_path('etc/data_config.json'))
        address = dic.get("remote.address", None)
        username = dic.get("remote.username", None)
        password = dic.get("remote.password", None)
        if address is None or username is None or password is None:
            raise ValueError("no address, username or password available!")

        self.api = DataApi(address, use_jrpc=False)
        self.api.set_timeout(60)
        r, msg = self.api.login(username=username, password=password)
        if not r:
            print msg
        else:
            print "DataAPI login success.".format(address)

        self.REPORT_DATE_FIELD_NAME = 'report_date'
Example #9
0
def main():
    dv = DataView()
    
    fullpath = fileio.join_relative_path('../output/prepared/20141114_20170327_freq=1D')
    dv.load_dataview(folder=fullpath)
    print dv.fields

    factor_formula = '-1 * Rank(Ts_Max(Delta(vwap, 7), 11))'  # GTJA
    # factor_formula = '-Delta((((close - low) - (high - close)) / (high - low)), 1)'
    # factor_formula = '-Delta(close, 5) / close'#  / pb'  # revert
    # factor_formula = 'Delta(tot_profit, 1) / Delay(tot_profit, 1)' # pct change
    # factor_formula = '- Delta(close, 3) / Delay(close, 3)'
    # factor_formula = 'Delay(total_oper_rev, 1)'
    factor_name = 'factor1'
    # dv.add_formula(factor_name, factor_formula)

    # dv.add_formula('factor2', 'GroupApply(Standardize, GroupApply(Cutoff, gtja, 3.0))')
    # dv.add_formula('factor_bool', 'If(factor1 > total_oper_rev, 1.5, 0.5)')
    # dv.add_formula('factor2', 'Standardize(factor1)')
    
    factor = dv.get_ts('ret20').shift(1, axis=0)  # avoid look-ahead bias
    # factor = dv.get_ts('gtja').shift(1, axis=0)  # avoid look-ahead bias
    
    price = dv.get_ts('vwap')
    price_bench = dv._data_benchmark
    
    trade_status = dv.get_ts('trade_status')
    mask_sus = trade_status != u'交易'.encode('utf-8')

    df_group = dv.data_group.copy()
    from quantos.util import dtutil
    df_group.index = dtutil.convert_int_to_datetime(df_group.index)
    factor_data = alphalens.utils.get_clean_factor_and_forward_returns(factor, price,
                                                                       mask_sus=mask_sus, benchmark_price=None,
                                                                       quantiles=5, periods=[20],
                                                                       # groupby=df_group.stack(), by_group=False
                                                                       )
    res = alphalens.tears.create_full_tear_sheet(factor_data, long_short=True,
                                                 output_format='pdf', verbose=True,
                                                 # by_group=True
                                                 )
Example #10
0
def test_data_api():
    dic = fileio.read_json(fileio.join_relative_path('etc/data_config.json'))
    address = dic.get("remote.address", None)
    username = dic.get("remote.username", None)
    password = dic.get("remote.password", None)
    if address is None or username is None or password is None:
        raise ValueError("no data service config available!")

    api = DataApi(address, use_jrpc=False)
    login_msg = api.login(username=username, password=password)
    print login_msg

    daily, msg = api.daily(
        symbol="600030.SH,000002.SZ",
        start_date=20170103,
        end_date=20170708,
        fields="open,high,low,close,volume,last,trade_date,settle")
    daily2, msg2 = api.daily(
        symbol="600030.SH",
        start_date=20170103,
        end_date=20170708,
        fields="open,high,low,close,volume,last,trade_date,settle")
    # err_code, err_msg = msg.split(',')
    assert msg == '0,'
    assert msg2 == '0,'
    assert daily.shape == (248, 8)
    assert daily2.shape == (124, 8)

    df, msg = api.bar(symbol="600030.SH",
                      trade_date=20170904,
                      freq='1m',
                      start_time=90000,
                      end_time=150000)
    print df.columns
    assert df.shape == (240, 15)

    print "test passed"
Example #11
0
import pandas as pd

from quantos.data.dataview import DataView
from quantos.data.dataservice import RemoteDataService
from quantos.research import alphalens
from quantos.util import fileio


ds = RemoteDataService()
dv = DataView()

props = {'start_date': 20120101, 'end_date': 20170901, 'universe': '000300.SH',
         # 'symbol': 'rb1710.SHF,rb1801.SHF',
         'fields': ('open,high,low,close,vwap,volume,turnover,'
                    # + 'pb,net_assets,'
                    + 's_fa_eps_basic,oper_exp,tot_profit,int_income'
                    ),
         'freq': 1}

dv.init_from_config(props, ds)
dv.prepare_data()

dv.add_formula('eps_ret', 'Return(s_fa_eps_basic, 4)', is_quarterly=True)
dv.add_formula('rule1', '(eps_ret > 0.2) && (Delay(eps_ret, 1) > 0.2)', is_quarterly=True)
dv.add_formula('rule2', 'close > Ts_Max(close, 120)', is_quarterly=False)
# dv.add_formula('ytan', 'rule1 && rule2', is_quarterly=False)

dv.add_formula('ret20', 'Delay(Return(close_adj, 20), -20)', is_quarterly=False)

dv.save_dataview(folder_path=fileio.join_relative_path('../output/prepared'))
Example #12
0
def create_information_tear_sheet(factor_data, group_adjust=False, by_group=False,
                                  output_format='plot', verbose=False):
    """
    Creates a tear sheet for information analysis of a factor.

    Parameters
    ----------
    factor_data : pd.DataFrame - MultiIndex
        A MultiIndex DataFrame indexed by date (level 0) and asset (level 1),
        containing the values for a single alpha factor, forward returns for
        each period, the factor quantile/bin that factor value belongs to, and
        (optionally) the group the asset belongs to.
    group_adjust : bool
        Demean forward returns by group before computing IC.
    by_group : bool
        If True, perform calcuations, and display graphs separately for
        each group.
    verbose : bool
        Whether return data.
    """

    ic = perf.factor_information_coefficient(factor_data, group_adjust)

    if output_format:
        plotting.plot_information_table(ic)
        
        columns_wide = 2
        fr_cols = len(ic.columns)
        rows_when_wide = (((fr_cols - 1) // columns_wide) + 1)
        vertical_sections = fr_cols + 3 * rows_when_wide + 2 * fr_cols
        gf = GridFigure(rows=vertical_sections, cols=columns_wide)

        ax_ic_ts = [gf.next_row() for _ in range(fr_cols)]
        plotting.plot_ic_ts(ic, ax=ax_ic_ts)

        ax_ic_hqq = [gf.next_cell() for _ in range(fr_cols * 2)]
        plotting.plot_ic_hist(ic, ax=ax_ic_hqq[::2])
        plotting.plot_ic_qq(ic, ax=ax_ic_hqq[1::2])

    if not by_group:

        mean_monthly_ic = perf.mean_information_coefficient(factor_data,
                                                            group_adjust,
                                                            by_group,
                                                            "M")
        if output_format:
            ax_monthly_ic_heatmap = [gf.next_cell() for x in range(fr_cols)]
            plotting.plot_monthly_ic_heatmap(mean_monthly_ic,
                                             ax=ax_monthly_ic_heatmap)

    if by_group:
        mean_group_ic = perf.mean_information_coefficient(factor_data,
                                                          by_group=True)

        if output_format:
            plotting.plot_ic_by_group(mean_group_ic, ax=gf.next_row())

    if output_format == 'plot':
        plt.show()
        # gf.fig.show()
    elif output_format == 'pdf':
        from quantos.util import fileio
        gf.fig.savefig(fileio.join_relative_path('..', 'output', 'infomation_tear_sheet.pdf'))
    elif output_format == '':
        pass
    
    if verbose:
        return {'daily_ic': ic}
Example #13
0
def create_returns_tear_sheet(factor_data, long_short=True, by_group=False,
                              output_format='plot', verbose=False):
    """
    Creates a tear sheet for returns analysis of a factor.

    Parameters
    ----------
    factor_data : pd.DataFrame - MultiIndex
        A MultiIndex DataFrame indexed by date (level 0) and asset (level 1),
        containing the values for a single alpha factor, forward returns for
        each period, the factor quantile/bin that factor value belongs to,
        and (optionally) the group the asset belongs to.
    long_short : bool
        Should this computation happen on a long short portfolio? if so, then
        factor values will be demeaned across the factor universe when factor
        weighting the portfolio. Additionally, mean quantile returns will be
        demeaned across the factor universe.
    by_group : bool
        If True, perform calcuations, and display graphs separately for
        each group.
    verbose : bool
        Whether return data.
    """

    # daily factor return for different periods
    factor_returns = perf.factor_returns(factor_data, long_short=long_short)

    # mean quantile return
    mean_ret_quantile, std_quantile = \
        perf.mean_return_by_quantile(factor_data, by_group=False, demeaned=long_short)
    
    mean_compret_quantile = mean_ret_quantile.apply(utils.rate_of_return, axis=0)

    # daily quantile return
    mean_ret_quant_daily, std_quant_daily = \
        perf.mean_return_by_quantile(factor_data, by_date=True, by_group=False, demeaned=long_short)

    mean_compret_quant_daily = mean_ret_quant_daily.apply(utils.rate_of_return, axis=0)
    compstd_quant_daily = std_quant_daily.apply(utils.std_conversion, axis=0)

    # alpha beta
    alpha_beta = perf.factor_alpha_beta(factor_data, long_short)

    # quantile return spread
    mean_ret_spread_quant, std_spread_quant = \
        perf.compute_mean_returns_spread(mean_compret_quant_daily,
                                         factor_data['factor_quantile'].max(),
                                         factor_data['factor_quantile'].min(),
                                         std_err=compstd_quant_daily)

    # start plotting
    if output_format:
        print "\n\nFactor Returns Tear Sheet (long short = {}): ".format(long_short)

        fr_cols = len(factor_returns.columns)
        vertical_sections = 2 + fr_cols * 3
        gf = GridFigure(rows=vertical_sections, cols=1)

        plotting.plot_returns_table(alpha_beta,
                                    mean_compret_quantile,
                                    mean_ret_spread_quant)

        ax_qrb = plotting.plot_quantile_returns_bar(mean_compret_quantile,
                                                    by_group=False,
                                                    ylim_percentiles=None,
                                                    ax=gf.next_row())

        ax_qrv = plotting.plot_quantile_returns_violin(mean_compret_quant_daily,
                                                       ylim_percentiles=(1, 99),
                                                       ax=gf.next_row())

        for p in factor_returns:
            ax_cr = plotting.plot_cumulative_returns(factor_returns[p],
                                                     period=p,
                                                     ax=gf.next_row())

            ax_qrbq = plotting.plot_cumulative_returns_by_quantile(mean_ret_quant_daily[p],
                                                                   period=p,
                                                                   ax=gf.next_row())

        ax_mean_quantile_returns_spread_ts = [gf.next_row()
                                              for x in range(fr_cols)]
        ax_mqrsts = plotting.plot_mean_quantile_returns_spread_time_series(
            mean_ret_spread_quant,
            std_err=std_spread_quant,
            bandwidth=0.5,
            ax=ax_mean_quantile_returns_spread_ts
        )

    if by_group:
        mean_return_quantile_group, mean_return_quantile_group_std_err = \
            perf.mean_return_by_quantile(factor_data,
                                         by_date=False,
                                         by_group=by_group,
                                         demeaned=True)

        mean_compret_quantile_group = \
            mean_return_quantile_group.apply(utils.rate_of_return, axis=0)

        if output_format:
            num_groups = len(mean_compret_quantile_group.index
                                                        .get_level_values('group')
                                                        .unique())
            vertical_sections = 1 + (((num_groups - 1) // 2) + 1)
            gf = GridFigure(rows=vertical_sections, cols=2)

            ax_quantile_returns_bar_by_group = [gf.next_cell()
                                                for _ in range(num_groups)]
            plotting.plot_quantile_returns_bar(mean_compret_quantile_group,
                                               by_group=True,
                                               ylim_percentiles=(5, 95),
                                               ax=ax_quantile_returns_bar_by_group)
        
    if output_format == 'plot':
        plt.show()
        # gf.fig.show()
    elif output_format == 'pdf':
        from quantos.util import fileio
        gf.fig.savefig(fileio.join_relative_path('..', 'output', 'returns_tear_sheet.pdf'))
    elif output_format == '':
        pass
        
    if verbose:
        mean_ret_quant_daily_mod = mean_ret_quant_daily.unstack(level=0)
        mean_ret_quant_daily_mod.columns = mean_ret_quant_daily_mod.columns.droplevel(level=0)
        tuples = mean_ret_quant_daily_mod.iteritems()
        tuples = [(str(a), b) for a, b in tuples]
        res = dict(tuples)
        return {'mean_quantile_return_daily': res}