Example #1
0
    def aschannel(self) -> 'Channel':
        """Converts a Gate into a Channel"""
        N = self.qubit_nb
        R = 4

        tensor = bk.outer(self.tensor, self.H.tensor)
        tensor = bk.reshape(tensor, [2**N] * R)
        tensor = bk.transpose(tensor, [0, 3, 1, 2])

        return Channel(tensor, self.qubits)
Example #2
0
def test_trace():
    tensor = bk.astensor(np.asarray([[1, 0, 0, 0],
                                     [0, -1, 0, 0],
                                     [0, 0, 2.7, 1],
                                     [0, 0, 1, 0.3j]]))
    tensor = bk.reshape(tensor, (4, 4))  # FIXME astensor should not reshape
    tr = bk.evaluate(bk.trace(tensor))
    print(tr)

    assert tr - (2.7+0.3j) == ALMOST_ZERO
Example #3
0
    def sharp(self) -> 'Channel':
        r"""Return the 'sharp' transpose of the superoperator.

        The transpose :math:`S^\#` switches the two covariant (bra)
        indices of the superoperator. (Which in our representation
        are the 2nd and 3rd super-indices)

        If :math:`S^\#` is Hermitian, then :math:`S` is a Hermitian-map
        (i.e. transforms Hermitian operators to hJrmitian operators)

        Flattening the :math:`S^\#` superoperator to a matrix gives
        the Choi matrix representation. (See channel.choi())
        """

        N = self.qubit_nb

        tensor = self.tensor
        tensor = bk.reshape(tensor, [2**N] * 4)
        tensor = bk.transpose(tensor, (0, 2, 1, 3))
        tensor = bk.reshape(tensor, [2] * 4 * N)
        return Channel(tensor, self.qubits)
Example #4
0
 def chi(self) -> bk.BKTensor:
     """Return the chi (or process) matrix representation of this
     superoperator"""
     N = self.qubit_nb
     return bk.reshape(self.sharp.tensor, [2**(N * 2)] * 2)
Example #5
0
 def choi(self) -> bk.BKTensor:
     """Return the Choi matrix representation of this super
     operator"""
     # Put superop axes in [ok, ib, ob, ik] and reshape to matrix
     N = self.qubit_nb
     return bk.reshape(self.sharp.tensor, [2**(N * 2)] * 2)