def setup(self): if RUN_NETWORK_TESTS: time.sleep(1) # Reduce test interdependence self.got_response = False self.got_timeout = False self.got_error = False self.found_nodes = False self.got_routing_response = False self.got_routing_error = False self.got_routing_timeout = False self.got_routing_nodes_found = False self.querier_mock = querier.QuerierMock(tc.CLIENT_ID) self.r = minitwisted.ThreadedReactor(task_interval=.01) self.rpc_m = rpc_manager.RPCManager(self.r, tc.CLIENT_ADDR[1]) self.querier = querier.Querier(self.rpc_m, tc.CLIENT_NODE) self.querier_routing = querier.Querier(self.rpc_m, tc.CLIENT_NODE) self.querier_routing.set_on_response_received_callback( self.on_routing_response) self.querier_routing.set_on_error_received_callback( self.on_routing_error) self.querier_routing.set_on_timeout_callback( self.on_routing_timeout) self.querier_routing.set_on_nodes_found_callback( self.on_routing_nodes_found) self.r.start()
def setup(self): import rpc_manager global time time = minitwisted.time = querier.time = MockTime() self.got_response = False self.got_timeout = False self.got_error = False self.querier = querier.Querier(tc.CLIENT_ID) self.r = minitwisted.ThreadedReactor(task_interval=.01) self.rpc_m = rpc_manager.RPCManager(self.r) self.querier = querier.Querier(tc.CLIENT_NODE) self.r.start()
def setup(self): self.got_peers = None querier_ = querier.Querier(tc.CLIENT_ID) routing_m = RoutingManagerMock() self.bootstrap_nodes = routing_m.get_closest_rnodes(tc.INFO_HASH_ZERO) self.lm = lookup_manager.LookupManager(tc.CLIENT_ID, querier_, routing_m, 2) self.lookup = self.lm.get_peers(tc.INFO_HASH, self._on_got_peers, tc.BT_PORT)
def setup(self): time.mock_mode() self.controller = controller.Controller(PYMDHT_VERSION, tc.CLIENT_NODE, 'test_logs/state.dat', routing_m_mod, lookup_m_mod, exp_m_mod, None) self.my_id = self.controller._my_id self.querier2 = querier.Querier() #self.my_id) self.servers_msg_f = message.MsgFactory(PYMDHT_VERSION, tc.SERVER_ID)
# Authors: Thierry Moudiki # # License: BSD 3 import pandas as pd import querier as qr # Import data ----- url = ('https://raw.github.com/pandas-dev' '/pandas/master/pandas/tests/data/tips.csv') df = pd.read_csv(url) # Example 1 ----- qrobj = qr.Querier(df=df) df1 = qrobj\ .select(req="tip, sex, smoker, time")\ .filtr(req="smoker == 'No'")\ .summarize(req="sum(tip), sex, time", group_by="sex, time")\ .df print(df1) # Example 2 ----- df2 = qr.Querier(df)\ .select(req='tip, sex, day,size')\ .filtr(req="(day == 'Sun') | (day == 'Sat')")\ .summarize(req="avg(tip), sex, day", group_by="sex, day")\
def corrtarget_encoder(df, target, rho=0.4, verbose=1, seed=123): """ Encode non-numerical columns using correlations. Parameters ---------- df: a data frame a data frame target: str target column a.k.a response rho: float correlation between pseudo target (used for averaging) and target verbose: int currently 0 = nothing printed; 1 = progress bar printed seed: int reproducibility seed Returns -------- a tuple: numerical data frame and achieved correlation """ target_ = df[target].values target_mean = target_.mean() target_std = target_.std() n_target = len(target_) C = np.eye(2) C[0, 1] = rho C[1, 0] = rho C_ = np.linalg.cholesky(C).T np.random.seed(seed) temp = np.vstack((target_, np.random.normal(size=n_target))).T df_ = pickle.loads(pickle.dumps(df, -1)) df_["pseudo_target"] = target_mean + np.dot(temp, C_)[:, 1] * target_std covariates_names = df.columns.values[df.columns.values != target].tolist() X = qr.select(df, ", ".join(covariates_names)) X_dtypes = X.dtypes X_numeric = pickle.loads(pickle.dumps(df, -1)) col_iterator = covariates_names if verbose == 0 else tqdm(covariates_names) for col in col_iterator: if X_dtypes[col] == np.object: # something like a character string X_temp = qr.summarize(df_, req=col + ", avg(pseudo_target)", group_by=col) levels = np.unique(qr.select(X, col).values) for l in levels: qrobj = qr.Querier(X_temp) val = np.float( qrobj.filtr(col + '== "' + l + '"').select("avg_pseudo_target").df.values) X_numeric = qr.setwhere(X_numeric, col=col, val=l, replace=val, copy=False) else: # a numeric column X_numeric[col] = X[col] return ( X_numeric, np.corrcoef(df[target].values, df_["pseudo_target"].values)[0, 1], )
# # License: BSD 3 import pandas as pd import querier as qr import sqlite3 import sys # data ----- url = ('https://raw.github.com/pandas-dev' '/pandas/master/pandas/tests/data/tips.csv') # Example 1 - Import from csv ----- qrobj1 = qr.Querier(source=url) df1 = qrobj1\ .select(req="tip, sex, smoker, time")\ .filtr(req="smoker == 'No'")\ .summarize(req="sum(tip), sex, time", group_by="sex, time")\ .df print(df1) # Example 2 - Import from sqlite3 ----- # an sqlite3 database connexion con = sqlite3.connect('people.db') with con: