def feat_importance_ip(row_id_str, ds_id, hdfs_feat_dir, local_score_file,
                       score_file_IT, sp_master, spark_rdd_compress,
                       spark_driver_maxResultSize, sp_exe_memory, sp_core_max,
                       zipout_dir, zipcode_dir, zip_file_name, mongo_tuples,
                       jobname, uploadtype):

    # zip func in other files for Spark workers ================= ================
    zip_file_path = ml_util.ml_build_zip_file(zipout_dir,
                                              zipcode_dir,
                                              zip_file_name,
                                              prefix='zip_feature_util')
    print "INFO: zip_file_path=", zip_file_path

    # get_spark_context
    sc = ml_util.ml_get_spark_context(sp_master, spark_rdd_compress,
                                      spark_driver_maxResultSize,
                                      sp_exe_memory, sp_core_max, jobname,
                                      [zip_file_path])
    '''    
    SparkContext.setSystemProperty('spark.rdd.compress', config.get('spark', 'spark_rdd_compress'))
    SparkContext.setSystemProperty('spark.driver.maxResultSize', config.get('spark', 'spark_driver_maxResultSize'))
    #SparkContext.setSystemProperty('spark.kryoserializer.buffer.mb', config.get('spark', 'spark_kryoserializer_buffer_mb'))
    SparkContext.setSystemProperty('spark.executor.memory', args.exe_memory)
    SparkContext.setSystemProperty('spark.cores.max', args.core_max)
    sc = SparkContext(args.sp_master, 'feature_importance_2ways:'+str(args.row_id))
    '''
    t0 = time()

    # get folder list (labels) from hdfs data_out/<id>/metadata  ==============
    dirFile_loc = os.path.join(hdfs_feat_dir, "metadata")
    dirFolders = sc.textFile(dirFile_loc)

    hash_Folders = dirFolders.collect()
    print "INFO: dirFile_loc=", dirFile_loc, ", hash_Folders=", hash_Folders
    folder_list = [x.encode('UTF8') for x in hash_Folders]
    print "INFO: folder_list=", folder_list

    # get feature seq : ngram hash mapping ==================================
    key = "dic_seq_hashes"  #{"123":"136,345"}
    jstr_filter = '{"rid":' + row_id_str + ',"key":"' + key + '"}'
    jstr_proj = '{"value":1}'

    # get parent dataset's data
    if ds_id != row_id_str:
        jstr_filter = '{"rid":' + ds_id + ',"key":"' + key + '"}'

    doc = query_mongo.find_one_t(mongo_tuples, jstr_filter, jstr_proj)
    dic_list = doc['value']

    dic_all_columns = dic_list
    feature_count = len(dic_list)

    #print "INFO: feature_count=",feature_count
    #print "dic_list=",dic_list #{u'123,345':u'136'}
    #print "INFO: dic_all_columns=",dic_all_columns # {1: u'8215,8216'}
    # end

    # get hash : raw string mapping ==================================
    key = "dic_hash_str"  #{"123":"openFile"}
    jstr_filter = '{"rid":' + row_id_str + ',"key":"' + key + '"}'
    jstr_proj = '{"value":1}'
    # get parent dataset's data
    if ds_id != row_id_str:
        jstr_filter = '{"rid":' + ds_id + ',"key":"' + key + '"}'

    doc = query_mongo.find_one_t(mongo_tuples, jstr_filter, jstr_proj)
    dic_hash_str = doc['value']
    '''
    # get folder list (labels) from hdfs data_out/<id>/libsvm  ==============
    libsvm_loc = os.path.join(hdfs_feat_dir , "libsvm_data") 
    
    # based on label, divide RDD into arrays
    f_rdd = sc.textFile(libsvm_loc).map(lambda x: libsvm2tuple_arr(x))
    
    arr_libsvm=sorted(f_rdd.collect(), key=lambda x:x[0]) # sorted by label
    '''
    # filename for featured data
    libsvm_data_file = os.path.join(hdfs_feat_dir, "libsvm_data")
    print "INFO: libsvm_data_file=", libsvm_data_file
    print "INFO: feature_count=",feature_count\

    # get sample array from hdfs
    arr_libsvm = zip_feature_util.get_sample_tuple_arr(sc, libsvm_data_file)
    # sorted by label
    arr_libsvm = sorted(arr_libsvm, key=lambda x: x[0])

    # convert libsvm to features_list, row_list, col_list, sample count, col_num
    lbl_flag = -1

    row_num_training = 0

    sparse_mtx_list = []  # for feat impor calculation
    features_list = []  # for csc_matrix
    row_list = []  # for csc_matrix
    col_list = []  # for csc_matrix
    sample_numbers = []  # for csc_matrix
    feature_arr = None

    for idx, i in enumerate(arr_libsvm):
        #print "idx=",idx,",l=",i[0],",d=",i[1:]

        if lbl_flag != i[0]:
            if feature_arr and len(feature_arr) > 0:
                features_list.append(np.array(feature_arr))
                row_list.append(np.array(row_arr))
                col_list.append(np.array(col_arr))
                sample_numbers.append(cnt)
            row_arr = []
            col_arr = []
            feature_arr = []
            cnt = 0
            lbl_flag += 1

        for j in i[1:]:
            row_arr.append(cnt)
            col_arr.append(j[0] - 1)
            feature_arr.append(j[1])
        cnt += 1
    # for last part
    if len(feature_arr) > 0:
        features_list.append(np.array(feature_arr))
        row_list.append(np.array(row_arr))
        col_list.append(np.array(col_arr))
        sample_numbers.append(cnt)

    #print ",features_list=",features_list
    #print ",row_list=",row_list
    #print ",col_list=",col_list
    print "INFO: sample_numbers=", sample_numbers

    col_num = len(dic_list)
    print "INFO: column number: ", col_num  #, ",len(max_feat_list)=",len(max_feat_list)

    for i in range(0, len(features_list)):
        #print "i=",i
        #print "features_list=",features_list[i]
        #print "row_list=",row_list[i]
        #print "col_list=",col_list[i]
        #print "sample_numbers=",sample_numbers[i]
        sparse_mtx = csc_matrix((features_list[i], (row_list[i], col_list[i])),
                                shape=(sample_numbers[i], col_num))
        sparse_mtx_list.append(sparse_mtx)

    #print sparse_mtx_list[0]
    print "INFO: sparse_mtx_list[0].shape=", sparse_mtx_list[0].shape
    #print sparse_mtx_list[1]
    print "INFO: sparse_mtx_list[1].shape=", sparse_mtx_list[1].shape

    exclusive_feature_set_mal = []
    exclusive_feature_set_clean = []
    dic_feature_cnt_mal = {}
    dic_feature_cnt_clean = {}

    dic_score = {}
    dic_cnt_mal = {}
    dic_cnt_clean = {}
    dic_IT_grain = {}
    ####################################################
    ####feature importance algorithms: 2 methods ####### # Only for 2 classes ???
    ####################################################
    if len(sample_numbers) == 2:

        ###################################################
        ################## calculate probability ############
        ###################################################

        print "INFO: =======Feature Importance(probability) ================ "

        for j in range(0, col_num):

            curr_col_dirty = sparse_mtx_list[0].getcol(j)
            sum_col = curr_col_dirty.sum(0)
            cnt_mal = sum_col.tolist()[0][0]

            curr_col_clean = sparse_mtx_list[1].getcol(j)
            sum_col = curr_col_clean.sum(0)
            cnt_clean = sum_col.tolist()[0][0]

            percnt_mal = cnt_mal / float(sample_numbers[0])
            percnt_clean = cnt_clean / float(sample_numbers[1])
            score_j = (percnt_mal + 1 - percnt_clean) / 2

            dic_score[j + 1] = score_j
            dic_cnt_clean[j + 1] = cnt_clean
            dic_cnt_mal[j + 1] = cnt_mal

        sorted_score = sorted(dic_score.items(),
                              key=operator.itemgetter(1),
                              reverse=True)

        #print "sorted_score:", sorted_score
        #print "dic_cnt_clean", dic_cnt_clean
        #print "dic_cnt_mal", dic_cnt_mal

        ############output result########################

        if os.path.exists(local_score_file):
            try:
                os.remove(local_score_file)
            except OSError, e:
                print("Error: %s - %s." % (e.local_score_file, e.strerror))

        for ii in range(0, len(sorted_score)):
            (feat, score) = sorted_score[ii]
            #print feat, score, dic_all_columns[feat]

            if dic_hash_str:
                description_str = feats2strs(dic_all_columns[str(feat)],
                                             dic_hash_str)
            else:
                description_str = "N/A"
                print "Warning: No mapping found for feature number"

            str01 = str(feat) + "\t" + str(
                score) + "\t" + description_str + "\n"
            with open(local_score_file, "a") as f:
                f.write(str01)

        ########################################################
        ##################Information Gain (entropy)############
        ########################################################

        print "INFO: =======Information Gain================ "
        for j in range(0, col_num):
            cnt_mal = dic_cnt_mal[j + 1]
            cnt_clean = dic_cnt_clean[j + 1]

            total_samples = sample_numbers[0] + sample_numbers[1]

            p0 = float(sample_numbers[0]) / total_samples
            p1 = 1 - p0

            if p0 == 0 or p1 == 0:
                parent_entropy = 0
            else:
                parent_entropy = 0 - p0 * np.log2(p0) - p1 * np.log2(p1)

            if cnt_clean + cnt_mal == 0:
                information_gain = 0
            elif total_samples - cnt_clean - cnt_mal == 0:
                information_gain = 0
            else:
                p0 = float(cnt_mal) / (cnt_clean + cnt_mal)
                p1 = 1 - p0
                if p0 == 0 or p1 == 0:
                    child_left_entropy = 0
                else:
                    child_left_entropy = 0 - p0 * np.log2(p0) - p1 * np.log2(
                        p1)

                p0 = float(sample_numbers[0] - cnt_mal) / (total_samples -
                                                           cnt_clean - cnt_mal)
                p1 = 1 - p0
                if p0 == 0 or p1 == 0:
                    child_right_entropy = 0
                else:
                    child_right_entropy = 0 - p0 * np.log2(p0) - p1 * np.log2(
                        p1)

                weighted_child_entropy = child_left_entropy * float(
                    cnt_clean +
                    cnt_mal) / total_samples + child_right_entropy * float(
                        total_samples - cnt_clean - cnt_mal) / total_samples
                information_gain = parent_entropy - weighted_child_entropy

            dic_IT_grain[j + 1] = information_gain

        sorted_IT_gain = sorted(dic_IT_grain.items(),
                                key=operator.itemgetter(1),
                                reverse=True)

        if os.path.exists(score_file_IT):
            try:
                os.remove(score_file_IT)
            except OSError, e:
                print("Error: %s - %s." % (e.score_file_IT, e.strerror))
Example #2
0
def feat_importance_comb(row_id_str, ds_id, num_to_show, w_FIRM, w_IT, w_Prob,
                         mongo_tuples, FIRM_score_file, IT_score_file,
                         Prob_score_file, score_file_combine):
    human_verified = dict()
    all_verified = dict()

    print "INFO: ======= Combine all feature importance info ================"

    # get feature importance voting data from db
    all_verified, human_verified = exec_sqlite.get_dict(row_id_str)
    #print "INFO: human_verified dict=",human_verified
    #print "INFO: all_verified dict=",all_verified

    ############begin##################
    with open(FIRM_score_file, 'r') as f:
        FIRM_score = f.readlines()
    with open(IT_score_file, 'r') as f:
        IT_score = f.readlines()
    with open(Prob_score_file, 'r') as f:
        Prob_score = f.readlines()

    # create file for one table here ======================
    dir_name = os.path.dirname(FIRM_score_file)
    coef_filename = os.path.join(dir_name,
                                 row_id_str + '_score_coef_comb.json')
    #print "INFO: combined fname=",coef_filename

    # get data from mongo
    key = "coef_arr"
    jstr_filter = '{"rid":' + row_id_str + ',"key":"' + key + '"}'
    jstr_proj = '{"value":1}'

    # get parent dataset's data
    if ds_id != row_id_str:
        jstr_filter = '{"rid":' + ds_id + ',"key":"' + key + '"}'

    doc = query_mongo.find_one_t(mongo_tuples, jstr_filter, jstr_proj)
    coef_arr = doc['value']
    #print "INFO: len(coef_arr)=",len(coef_arr)

    # get sample count ===========
    key = "feat_sample_count_arr"
    jstr_filter = '{"rid":' + row_id_str + ',"key":"' + key + '"}'
    jstr_proj = '{"value":1}'

    # get parent dataset's data
    # need to chk if new feature
    if ds_id != row_id_str:
        jstr_filter = '{"rid":' + ds_id + ',"key":"' + key + '"}'

    doc = query_mongo.find_one_t(mongo_tuples, jstr_filter, jstr_proj)

    feat_sample_count_arr = None
    if not doc is None:
        feat_sample_count_arr = doc['value']

    combine_with_coef(row_id_str, coef_arr, FIRM_score, IT_score, Prob_score,
                      coef_filename, feat_sample_count_arr)

    featurelist_FIRM = []
    featurelist_IT = []
    featurelist_Prob = []

    dic_all_columns = {}
    print "INFO: num to_show=", num_to_show
    for i in range(0, num_to_show):
        ####FIRM####
        str_in = FIRM_score[i]
        feature_id, score, descpt = str_in.split('\t', 3)
        featurelist_FIRM.append(feature_id)
        if not feature_id in dic_all_columns:
            dic_all_columns[feature_id] = descpt
        ####IT####
        str_in = IT_score[i]
        feature_id, score, descpt = str_in.split('\t', 3)
        featurelist_IT.append(feature_id)
        if not feature_id in dic_all_columns:
            dic_all_columns[feature_id] = descpt
        ####Prob####
        str_in = Prob_score[i]
        feature_id, score, descpt = str_in.split('\t', 3)
        featurelist_Prob.append(feature_id)
        if not feature_id in dic_all_columns:
            dic_all_columns[feature_id] = descpt

    list_i = [i + 1 for i in range(0, num_to_show)]
    zipped_FIRM = zip(featurelist_FIRM, list_i)
    zipped_IT = zip(featurelist_IT, list_i)
    zipped_Prob = zip(featurelist_Prob, list_i)

    FIRM_dict = dict(zipped_FIRM)
    IT_dict = dict(zipped_IT)
    Prob_dict = dict(zipped_Prob)

    list_combine = featurelist_FIRM + featurelist_IT + featurelist_Prob
    list_unique = OrderedDict.fromkeys(list_combine).keys()
    #print list_unique, len(list_unique)

    #human_verified = {'188':7, '218':6} #####get human_verified from database, all click_number > 5 are human_verified###
    score_combine = {}
    for i in range(0, len(list_unique)):
        feat_id = list_unique[i]
        if feat_id in human_verified:
            print "INFO: found feat_id=", feat_id
            continue
        score = 0
        if feat_id in FIRM_dict:
            score = score + w_FIRM * FIRM_dict[feat_id]
        else:
            score = score + w_FIRM * (num_to_show + 1)
        if feat_id in IT_dict:
            score = score + w_IT * IT_dict[feat_id]
        else:
            score = score + w_IT * (num_to_show + 1)
        if feat_id in Prob_dict:
            score = score + w_Prob * Prob_dict[feat_id]
        else:
            score = score + w_Prob * (num_to_show + 1)
        score = score / float(3)
        #print feat_id, score

        #############add human feedback##########
        if feat_id in all_verified:
            click_number = all_verified[
                feat_id]  #####get click number from database###
        else:
            click_number = 0
        #print feat_id, click_number, score
        #click_number = 3
        if click_number == 1:
            score = score - 2
        elif click_number == 2:
            score = score - 4
        elif click_number == 3:
            score = score - 10
        elif click_number == 4:
            score = score - 20
        elif click_number == 5:
            score = 0

        if score < 0:
            score = 0
        #print "***=",feat_id, click_number, score

        score_combine[feat_id] = score

    if os.path.exists(score_file_combine):
        try:
            os.remove(score_file_combine)
        except OSError, e:
            print("Error: %s - %s." % (e.score_file_combine, e.strerror))
def train(row_id_str, ds_id, hdfs_feat_dir, local_out_dir, ml_opts_jstr
    , sp_master, spark_rdd_compress, spark_driver_maxResultSize, sp_exe_memory, sp_core_max
    , zipout_dir, zipcode_dir, zip_file_name
    , mongo_tuples, labelnameflag, fromweb, src_filename
    , jobname ): 

    # create zip files for Spark workers ================= ================
    zip_file_path = ml_build_zip_file(zipout_dir, zipcode_dir, zip_file_name, prefix='zip_feature_util')
    print "INFO: zip_file_path=",zip_file_path
        
    #data_folder = hdfs_feat_dir + "/"
    #local_out_dir = local_out_dir + "/"
    #if os.path.exists(local_out_dir): 
    #    shutil.rmtree(local_out_dir) # to keep smaplelist file
    if not os.path.exists(local_out_dir):
        os.makedirs(local_out_dir)
            
    # init Spark context ====
    sc=ml_util.ml_get_spark_context(sp_master
        , spark_rdd_compress
        , spark_driver_maxResultSize
        , sp_exe_memory
        , sp_core_max
        , jobname
        , [zip_file_path]) 

    # start here =================================================================== ===============
    t0 = time()
        
    
    ### Need to check if PCA available here ===========================
    libsvm_data_file = os.path.join(hdfs_feat_dir , src_filename) # need to set k numb in filename somehow
    print "INFO: libsvm_data_file=", libsvm_data_file
    #samples_rdd = MLUtils.loadLibSVMFile(sc, libsvm_data_file).cache()
    # load sample RDD from text file   
    # format (LabeledPoint,hash) from str2LabeledPoint_hash() 
    feature_count=0
    samples_rdd, feature_count = zip_feature_util.get_sample_rdd(sc, libsvm_data_file, feature_count, '')
    
    # get label as a list
    labels_list_all = samples_rdd.map(lambda p: int(p[0].label)).collect()
    total_sample_count=len(labels_list_all)
    parsedData =samples_rdd.map(lambda p: p[0].features).cache()
    #for i in parsedData.collect(): #p.features: pyspark.mllib.linalg.SparseVector
    #    print "pd=",type(i),",i=",i

    t1 = time()
    print 'INFO: running time: %f' %(t1-t0)
    t0 = t1
    
    ###############################################
    ########## build learning model ###############
    ###############################################
    
    ### get the parameters###
    print "INFO: ============Learning Algorithm and Parameters============="
    para_dict = json.loads(ml_opts_jstr)
    flag_model = para_dict['learning_algorithm'] # kmeans
    iteration_num = eval(para_dict['iterations'])
    k=2
    if 'k' in para_dict:
        k = eval(para_dict['k'])

    print "INFO: Learning Algorithm:", flag_model
    print "INFO: iterations=", iteration_num
    #print "training_sample_number=", training_sample_number
    
    ### generate label names (family names) #####
    ### connect to database to get the column list which contains all column number of the corresponding feature####
    if labelnameflag == 1:
        key = "dic_name_label"
        jstr_filter='{"rid":'+row_id_str+',"key":"'+key+'"}'
        jstr_proj='{"value":1}'
 
        # get parent dataset's data
        if ds_id != row_id_str:
            jstr_filter='{"rid":'+ds_id+',"key":"'+key+'"}'
 
        doc=query_mongo.find_one_t(mongo_tuples, jstr_filter, jstr_proj)
        dic_list = doc['value']
        
        label_dic = {}
        for i in range(0, len(dic_list)):
            for key in dic_list[i]:
                label_dic[dic_list[i][key]] = key.encode('UTF8')
        print "INFO: label_dic:", label_dic
    else:
        label_dic = {}
        label_set = set(labels_list_all)
        for label_value in label_set:
            label_dic[int(label_value)] = str(int(label_value))
        print "INFO: generated label_dic:", label_dic 
        
    labels_list = []
    for key in sorted(label_dic):
        labels_list.append(label_dic[key])
    print "INFO: labels_list=", labels_list
    
    ### build model ###
    
    if flag_model == "kmeans":
        print "=================== Kmeans ============"
        model = KMeans.train(parsedData, k, maxIterations=iteration_num)   
        t_cost= model.computeCost(parsedData)
        print "INFO: cost for training set =", str(t_cost)
        clusterCenters=model.clusterCenters
        print "INFO: clusterCenters t=", type(clusterCenters)  #list
    elif flag_model == "gaussian_mixture_model": # didn't work some native lib issue
        print "=================== Gaussian_Mixture_Model ============"
        model = GaussianMixture.train(parsedData, k, maxIterations=iteration_num)   
        print "INFO: model.weights =", model.weights
    else:
        print "INFO: Training model selection error: no valid ML model selected!"
        return
        
    ### Save model
    save_dir = config.get('app', 'HADOOP_MASTER')+config.get('app', 'HDFS_MODEL_DIR')+'/'+row_id_str
    try:
        hdfs.ls(save_dir)
        #print "find hdfs folder"
        hdfs.rmr(save_dir)
        #print "all files removed"
    except IOError as e:
        print "ERROR: I/O error({0}): {1}".format(e.errno, e.strerror)
    except:
        print "ERROR: Unexpected error:", sys.exc_info()[0] 
    
    print "INFO: model saved at hdfs=",save_dir
    print "INFO: model type=",type(model)," model=",model
    model.save(sc, save_dir)
        
    ###load model if needed 
    #sameModel = SVMModel.load(sc, save_dir)

    ### 
    # (true label, keams label, features list, hash)
    all_data=samples_rdd.map(lambda t: ( t[0].label, model.predict(t[0].features), t[0].features, t[1] ) ).collect() 
    true_label_arr = np.asarray([int(x) for x,_,_,_ in all_data])
    labels_kmeans = np.asarray([int(x) for _,x,_,_ in all_data])
    hash_list = np.asarray([x for _,_,_,x in all_data])
    print "INFO: all_data len=",len(all_data),"all_data t=",type(labels_list_all)
    print "INFO: true_label_arr.shape=",true_label_arr.shape,"labels_kmeans.shape=",labels_kmeans.shape
    print "INFO: true_label_arr t=",type(true_label_arr),"labels_kmeans t=",type(labels_kmeans)
    mtx_center=np.asarray(clusterCenters)
    features_array_reduced=np.asarray([x.toArray() for _,_,x,_ in all_data])
    print "INFO: mtx_center t=",type(mtx_center),"mtx_center.shape=",mtx_center.shape
    print "INFO: features_array_reduced t=",type(features_array_reduced),"features_array_reduced.shape",features_array_reduced.shape

    #Adjusted Mutual Information between two clusterings
    amis=adjusted_mutual_info_score(labels_list_all,labels_kmeans)
    print "INFO: Adjusted_mutual_info_score=", amis  
    #Similarity measure between two clusterings
    ars=adjusted_rand_score(labels_list_all,labels_kmeans)
    print "INFO: Adjusted_rand_score=", ars   

    
    accuracy=0.0
   
    t1 = time()
    print 'INFO: training run time: %f' %(t1-t0)
    t0 = t1

    ###############################################
    ########## plot histogram               ######
    ###############################################
    n_clusters=k
    plot_col_num = int(math.ceil(math.sqrt(n_clusters)))
    figsize = (4*plot_col_num, 3*int(math.ceil(n_clusters*1.0/plot_col_num)))
    

    print "INFO: n_clusters=",n_clusters,",label_dic=",label_dic
    print "INFO: plot_col_num=",plot_col_num,",figsize=",figsize,",local_out_dir=",local_out_dir
    
    # kmeans histogram
    _, p_true = ml_plot_kmeans_histogram_subfigures(true_label_arr, labels_kmeans, n_clusters, names = label_dic
                        , plot_col_num = plot_col_num, figsize=figsize, folder = local_out_dir, rid=row_id_str)
    # normalized kmeans histogram
    _, p_true_norm = ml_plot_kmeans_histogram_subfigures(true_label_arr, labels_kmeans, n_clusters, names = label_dic
                        , plot_col_num = plot_col_num, figsize=figsize, normalize = True, folder = local_out_dir, rid=row_id_str)
    

    ####plot "reverse" histogram with labels ####
    num_bars = max(true_label_arr) + 1
    figsize = (4*plot_col_num, 3*int(math.ceil(num_bars*1.0/plot_col_num)))
    
    _, p_cluster = ml_plot_kmeans_histogram_subfigures(labels_kmeans, true_label_arr, num_bars, names = label_dic
                        , plot_col_num = plot_col_num, figsize=figsize, reverse = True, folder = local_out_dir, rid=row_id_str)


    #### plot dot figures ####
    # dot plot for Kmeans   ===========
    filename=os.path.join(local_out_dir ,row_id_str+'_cluster.png')   
    filename_3d=os.path.join(local_out_dir ,row_id_str+'_cluster_3d.json')  
    ml_plot_kmeans_dot_graph_save_file(features_array_reduced, labels_kmeans, mtx_center, n_clusters, figsize=(10,7), filename=filename
        , title='KMeans', filename_3d=filename_3d)
        
    # dot plot for True Labels  ===========
    filename=os.path.join(local_out_dir ,row_id_str+'_cluster_tl.png')      
    filename_3d=os.path.join(local_out_dir ,row_id_str+'_cluster_3d_tl.json')  
    ml_plot_kmeans_dot_graph_save_file(features_array_reduced, true_label_arr, mtx_center, n_clusters, figsize=(10,7), filename=filename
        , title='True Labels', filename_3d=filename_3d)

    dataset_info={"training_fraction":1, "class_count":n_clusters,"dataset_count":total_sample_count}
    
    # only update db for web request
    if fromweb=="1": 
        #print "database update"
        str_sql="UPDATE atdml_document set "+"accuracy = '" \
            +"', status = 'learned', processed_date ='"+str(datetime.datetime.now()) \
            +"', total_feature_numb='"+str(feature_count) \
            +"', perf_measures='{}" \
            +"', dataset_info='"+json.dumps(dataset_info) \
            +"' where id="+row_id_str
        ret=exec_sqlite.exec_sql(str_sql)
        print "INFO: Data update done! ret=", str(ret)
    else:
        print "INFO: accuracy = '"+str(accuracy*100)+"%"

    
    print 'INFO: Finished!'
    return 0
def train(row_id_str, ds_id, hdfs_feat_dir, local_out_dir, ml_opts_jstr, excluded_feat_cslist
    , sp_master, spark_rdd_compress, spark_driver_maxResultSize, sp_exe_memory, sp_core_max
    , zipout_dir, zipcode_dir, zip_file_name
    , mongo_tuples, labelnameflag, fromweb
    , training_fraction, jobname, model_data_folder ): 
    

    # zip func in other files for Spark workers ================= ================
    zip_file_path = ml_build_zip_file(zipout_dir, zipcode_dir, zip_file_name, prefix='zip_feature_util')
    print "INFO: zip_file_path=",zip_file_path
    

    # ML model filename ====
    model_fname=os.path.join(model_data_folder, row_id_str+'.pkl')
    print "INFO: model_data_folder=",model_data_folder    
    # create out folders and clean up old model files ====
    ml_util.ml_prepare_output_dirs(row_id_str,local_out_dir,model_data_folder,model_fname)   

    # init Spark context ====
    sc=ml_util.ml_get_spark_context(sp_master
        , spark_rdd_compress
        , spark_driver_maxResultSize
        , sp_exe_memory
        , sp_core_max
        , jobname
        , [zip_file_path]) 

    
    t0 = time()
    t00 = t0
    
    # check if ml_opts.has_excluded_feat ==1 ===================================
    has_excluded_feat=0
    if not ml_opts_jstr is None:
        ml_opts=json.loads(ml_opts_jstr)
        if "has_excluded_feat" in ml_opts:
            has_excluded_feat=ml_opts["has_excluded_feat"]

    # get excluded feature list from mongo ========== ===
    if str(has_excluded_feat) == "1" and excluded_feat_cslist is None:
        excluded_feat_cslist=ml_util.ml_get_excluded_feat(row_id_str, mongo_tuples)
    print "INFO: excluded_feat_cslist=",excluded_feat_cslist
            
    # source libsvm filename  
    libsvm_data_file = os.path.join(hdfs_feat_dir , "libsvm_data")
    print "INFO: libsvm_data_file=", libsvm_data_file

    # load feature count file
    feat_count_file=libsvm_data_file+"_feat_count"
    feature_count=zip_feature_util.get_feature_count(sc,feat_count_file)
    print "INFO: feature_count=",feature_count

    
    # load sample RDD from text file   
    #   also exclude selected features in sample ================ =====
    # format (LabeledPoint,hash) from str2LabeledPoint_hash() 
    #samples_rdd = MLUtils.loadLibSVMFile(sc, libsvm_data_file)
    samples_rdd,feature_count = zip_feature_util.get_sample_rdd(sc, libsvm_data_file, feature_count, excluded_feat_cslist)

    all_data = samples_rdd.collect()
    sample_count=len(all_data)
    # 2-D array
    features_list = [x.features.toArray() for x,_ in all_data]
    # label array
    labels_list_all = [x.label for x,_ in all_data]
    # hash array
    hash_list_all = [x for _,x in all_data]

    # convert to np array
    labels_list_all = array(labels_list_all)
    features_array = np.array(features_list)
    hash_list_all=np.array(hash_list_all)
    
    # generate sparse matrix (csr) for all samples
    features_sparse_mtx = csr_matrix(features_array)

    ### randomly split the samples into training and testing data ===============
    X_train_sparse, X_test_sparse, labels_train, labels_test, train_hash_list, test_hash_list = \
            cross_validation.train_test_split(features_sparse_mtx, labels_list_all, hash_list_all, test_size=(1-training_fraction) )
    # X_test_sparse is scipy.sparse.csr.csr_matrix
    testing_sample_count = len(labels_test)
    training_sample_count=len(labels_train)
    training_lbl_cnt_list=Counter(labels_train)
    testing_lbl_cnt_list=Counter(labels_test)
    
    print "INFO: training sample count=",training_sample_count,", testing sample count=",testing_sample_count,",sample_count=",sample_count
    print "INFO: training label list=",training_lbl_cnt_list,", testing label list=",testing_lbl_cnt_list
    print "INFO: train_hash_list count=",len(train_hash_list),", test_hash_list count=",len(test_hash_list)
    t1 = time()
    print 'INFO: running time: %f' %(t1-t0)
    
    ###############################################
    ###########build learning model################
    ###############################################
    
    ### parse parameters and generate the model ###
    (clf, model_name, api, cv, param_dic) = parse_param_and_get_model(ml_opts)
    if model_name == "none":
        print "ERROR: model name not found!"
        return -1

    #param_jobj=json.loads(ml_opts_jstr);
    #print "param_jobj=",param_jobj
        
    ########################################################
    ##########Grid Search with cross validation#############
    ########################################################    
    json2save={}
    json2save["rid"]=int(row_id_str)
    json2save["key"]="cv_result"
    #json2save["param_str"]=ml_opts_jstr
    json2save["param_dic"]=param_dic
    cv_grid=[]
    if api == "centralized":
        #########run with Scikit-learn API (for comparison)######
        print "INFO: ******************Grid Search with Scikit-learn API************"

        t0 = time()
        
        # Set the parameters by cross-validation
        #tuned_parameters = [{'C': [0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000, 100000]}]
        #tuned_parameters = [{'kernel': ['rbf'], 'gamma': [1e-3, 1e-4], \
        #                 'C': [1, 10, 100, 1000]}, \
        #                {'kernel': ['linear'], 'C': [1, 10, 100, 1000]}]

        scores = ['accuracy']
        json2save["scores"]=scores
        #print json2save
        
        for score in scores: # for one item only? score=accuracy
            print("INFO: # Tuning hyper-parameters for %s" % score)
            #print()

            grid = grid_search.GridSearchCV(estimator = clf, param_grid = param_dic, cv=cv, scoring= score)
            grid.fit(X_train_sparse, labels_train)
            
            print "INFO: Best parameters set found on development set:"
            print "INFO: grid.best_params_=",grid.best_params_
            print "INFO: Grid scores on development set:" 
            for key in grid.best_params_:
                print "INFO: best_params["+key+"]=", grid.best_params_[key]
                if key.lower()=="regtype":
                    ml_opts['regularization']=str(grid.best_params_[key]) # add best param to 
                else:
                    ml_opts[key.lower()]=str(grid.best_params_[key]) # add best param to 
            # save best param to db as json string
            j_str=json.dumps(ml_opts);
            json2save["param_str"]=j_str;
            print "INFO: grid_scores_ with params:"
            for params, mean_score, scores in grid.grid_scores_:
                print "INFO: %0.3f (+/-%0.03f) for %r" % (mean_score, scores.std() * 2, params)
                #outstr='%s,%0.3f,%0.03f,%s' % (params,mean_score, scores.std() * 2,"Selected" if params==grid.best_params_ else "")
                outj={}
                outj["param"]=params
                outj["average_accuracy"]="%0.3f" % (mean_score)
                outj["std_deviation"]="%0.3f" % (scores.std() * 2)
                outj["selected"]="%s" % ("Selected" if params==grid.best_params_ else "")
                
                cv_grid.append(outj)
        
        clf_best = grid.best_estimator_
        t1 = time()
        ############# END run with SKlearn ######
        print 'INFO: Grid Search with SKlearn running time: %f' %(t1-t0)
        t0 = time()
    else:
    
        #############run with SPARK######
        
        print "INFO: ******************Grid Search with SPARK************"
            
        all_comb_list_of_dic = get_all_combination_list_of_dic(param_dic) 
        print "INFO: Total number of searching combinations=", len(all_comb_list_of_dic) 
        #print "all_comb_list_of_dic: ", all_comb_list_of_dic
        params_rdd = sc.parallelize(all_comb_list_of_dic)
        
        ###broad cast clf, traning data, testing data to all workers###
        X_broadcast = sc.broadcast(X_train_sparse)
        y_broadcast = sc.broadcast(labels_train)
        clf_broadcast = sc.broadcast(clf)
        
        ### Grid Search with CV in multiple workers ###
        models = params_rdd.map(lambda x: learn_with_params(clf_broadcast.value, X_broadcast.value, y_broadcast.value, cv, x)).sortByKey(ascending = False).cache()
        
        (ave_accuracy, (clf_best, p_dic_best, std2))  = models.first()
        # output results #

        print "INFO: Best parameters set found for ", model_name, " is: "
        print "INFO: ",
        for key in p_dic_best:
            print key, " = ", p_dic_best[key],
            if key.lower()=="regtype":
                ml_opts['regularization']=str(p_dic_best[key]) 
            else:
                ml_opts[key.lower()]=str(p_dic_best[key]) # add best param to 
            # save best param to db as json string
        print ""
        j_str=json.dumps(ml_opts);
        json2save["param_str"]=j_str;

        print "INFO: Average accuracy with CV = ", cv, ": ", ave_accuracy
        
        ######## print complete report #######
        print "INFO: Grid scores on development set:"
        all_results = models.collect()
        for i in range(0, len(all_results)):
            (ave_accu_i, (clf_i, p_dic_i, std2_i)) = all_results[i]
            print "INFO: ",ave_accu_i, " for ", p_dic_i
            print "INFO: %0.3f (+/-%0.03f) for " % (ave_accu_i, std2_i), p_dic_i
            #outstr='%s,%0.3f,%0.03f,%s' % ( p_dic_i, ave_accu_i, std2_i, "Selected" if p_dic_i==p_dic_best else "")
            outj={}
            outj["param"]=p_dic_i
            outj["average_accuracy"]="%0.3f" % (ave_accu_i)
            outj["std_deviation"]="%0.3f" % (std2_i)
            outj["selected"]="%s" % ("Selected" if p_dic_i==p_dic_best else "")
            
            cv_grid.append(outj)
        print " "
        
        t1 = time()
        
        ############# END run with SPARK######
        print 'INFO: Grid search with SPARK running time: %f' %(t1-t0)
    
    ##################################################################################
    #print "cv_grid=",cv_grid
    #json2save["cv_grid_title"]='param,average_accuracy,std_deviation,selected' 
    json2save["cv_grid_data"]=cv_grid
    json2save['clf_best']=str(clf_best).replace("\n","").replace("    ","")
    cv_result=json.dumps(json2save)
    #print "INFO: cv_result=",cv_result
    filter='{"rid":'+row_id_str+',"key":"cv_result"}'
    upsert_flag=True
    ## write to mongoDB.myml.dataset_info, ignore doc with duplicated key
    # db.dataset_info.createIndex({"rid":1,"key":1},{unique:true})
    ret=query_mongo.upsert_doc_t(mongo_tuples,filter,cv_result,upsert_flag)
    print "INFO: Upsert count for cv_result: ret=",ret
 
    ##################################################################################
    ##########Retrain with best model for training set and output results#############
    ##################################################################################
    print "INFO: **********Retrain with best model for training set and output results************"
    
    clf_best.fit(X_train_sparse, labels_train)
    #### save clf_best for future use ####
    #joblib.dump(clf_best, model_data_folder + row_id_str+'.pkl')
    joblib.dump(clf_best, model_fname) 
    
    ### Evaluating the model on testing data
    labels_pred = clf_best.predict(X_test_sparse)
    accuracy = clf_best.score(X_test_sparse, labels_test)
    print "INFO: Accuracy = ", accuracy
    
    
    ######################################the rest of the code is the same as train_sklean.py (replace clf with clf_best)#####################################################################
    clf=clf_best
    print "INFO: model type=",type(clf)," clf=",clf

    # get data from model ================================
    coef=None
    intercept=None
    try:
        if type(clf) in ( classes.SVC , classes.NuSVC) :# svm didn't have coef_
            col_num=clf.support_vectors_.shape[1]
        else: #linear only
            # coef_ is only available when using a linear kernel
            col_num = len(clf.coef_[0])
            coef=clf.coef_[0]
            intercept=clf.intercept_[0] # only get 1st item?
            #print "**model:clf.coef_[0] =",clf.coef_[0]
    except Exception as e:
        print "WARNING: Can't get clf.coef_[0]. e=",e,", get total features from meta-data"
        col_num = 0 #how to get feature number for sparse array? 
    print "INFO: total feature # in the model: ", col_num

    jfeat_coef_dict={}
    # create feature coefficient file ================================
    if coef is None:
        print "WARNING: model weights not found!"    
    else:
        feat_filename=os.path.join(local_out_dir,row_id_str+"_feat_coef.json")
        print "INFO: feat_filename=",feat_filename
        # save coef_arr to mongo & create jfeat_coef_dict===
        jfeat_coef_dict=ml_util.ml_save_coef_build_feat_coef(row_id_str, mongo_tuples, coef, intercept, feat_filename, ds_id)
    #print "INFO: jfeat_coef_dict=", jfeat_coef_dict
    print "INFO: jfeat_coef_dict len=", len(jfeat_coef_dict )


    # filename for false pred 
    false_pred_fname=os.path.join(local_out_dir,row_id_str+"_false_pred.json")
    print "INFO: false_pred_fname=", false_pred_fname

    # build files for false pred & score graph
    (score_arr_0, score_arr_1, max_score,min_score)=ml_build_false_pred(X_test_sparse,coef,intercept
        , labels_test, labels_pred, test_hash_list, model_name, jfeat_coef_dict, false_pred_fname) 

    # save pred output
    pred_out_arr=[]
    for i in range(0,len(labels_test)):
        pred_out_arr.append((labels_test[i], labels_pred[i], test_hash_list[i]))
    pred_ofname=os.path.join(local_out_dir,row_id_str+"_pred_output.pkl")
    print "INFO: pred_ofname=", pred_ofname
    ml_util.ml_pickle_save(pred_out_arr,pred_ofname)
    
    ###################################################
    ### generate label names (family names) ###########
    ### connect to database to get the column list which contains all column number of the corresponding feature####
    ###################################################
    
    if labelnameflag == 1:
        key = "dic_name_label"
        jstr_filter='{"rid":'+row_id_str+',"key":"'+key+'"}'
        jstr_proj='{"value":1}'

        # get parent dataset's data
        if ds_id != row_id_str:
            jstr_filter='{"rid":'+ds_id+',"key":"'+key+'"}'
        
        doc=query_mongo.find_one_t(mongo_tuples, jstr_filter, jstr_proj)
        dic_list = doc['value']
        
        label_dic = {}
        for i in range(0, len(dic_list)):
            for key in dic_list[i]:
                label_dic[dic_list[i][key]] = key.encode('UTF8')
        print "INFO: label_dic:", label_dic
    else:
        label_dic = {}
        label_set = set(labels_list_all)
        for label_value in label_set:
            label_dic[int(label_value)] = str(int(label_value))
        print "INFO: ******generated label_dic:", label_dic 
    
    labels_list = []
    for key in sorted(label_dic):
        labels_list.append(label_dic[key])
    
    ### generate sample numbers of each family in testing data###
    testing_sample_number = len(labels_test)
    print "INFO: testing_sample_number=", testing_sample_number
    test_cnt_dic = {}
    for key in label_dic:
        test_cnt_dic[key] = 0
    for i in range (0, testing_sample_number):
        for key in label_dic:
            if labels_test[i] == key:
                test_cnt_dic[key] = test_cnt_dic[key] + 1
    print "INFO: Number of samples in each label is=", test_cnt_dic
    
    ###############################################
    ###########plot prediction result figure#######
    ###############################################
    pred_fname=os.path.join(local_out_dir,row_id_str+"_1"+".png")
    true_fname=os.path.join(local_out_dir,row_id_str+"_2"+".png")
    pred_xlabel='Prediction (Single Run)'
    true_xlabel='True Labels (Single Run)'
    test_cnt_dic=ml_util.ml_plot_predict_figures(labels_pred.tolist(), labels_test.tolist(), labels_list, label_dic, testing_sample_count 
        , pred_xlabel, pred_fname, true_xlabel, true_fname)
    print "INFO: figure files: ", pred_fname, true_fname
    print "INFO: Number of samples in each label is=", test_cnt_dic

    roc_auc=None
    #fscore=None 
    perf_measures=None
    class_count=len(labels_list)
    dataset_info={"training_fraction":training_fraction, "class_count":class_count,"dataset_count":sample_count}
    #############################################################
    ###################for 2 class only (plot ROC curve)#########
    #############################################################
    if len(labels_list) == 2:

        # build data file for score graph
        score_graph_fname=os.path.join(local_out_dir,row_id_str+"_score_graph.json")
        print "INFO: score_graph_fname=", score_graph_fname
        ml_build_pred_score_graph(score_arr_0,score_arr_1,model_name, score_graph_fname,max_score,min_score)

            
        do_ROC=True
        reverse_label_dic = dict((v,k) for k, v in label_dic.items())
        if 'clean' in reverse_label_dic:
            flag_clean = reverse_label_dic['clean']
        elif 'benign' in reverse_label_dic:
            flag_clean = reverse_label_dic['benign']
        elif '0' in reverse_label_dic:
            flag_clean = 0
        else:
            print "No ROC curve generated: 'clean' or '0' must be a label for indicating negative class!"
            do_ROC=False
            
        if do_ROC:
            # calculate fscore  ==========
            perf_measures=ml_util.calculate_fscore(labels_test, labels_pred)
            print "INFO: perf_measures=",perf_measures
            
            confidence_score = clf_best.decision_function(X_test_sparse)
                    
            if flag_clean == 0:
                scores = [x for x in confidence_score]
                s_labels = [x for x in labels_test]
                testing_N = test_cnt_dic[0]
                testing_P = test_cnt_dic[1]
            else:
                scores = [-x for x in confidence_score]
                s_labels = [1-x for x in labels_test]
                testing_N = test_cnt_dic[1]
                testing_P = test_cnt_dic[0]
                
            # create ROC data file ======== ==== 
            roc_auc=ml_create_roc_files(row_id_str, scores, s_labels, testing_N, testing_P
                , local_out_dir, row_id_str)
                
            perf_measures["roc_auc"]=roc_auc
            
                
    # only update db for web request
    if fromweb=="1": 
        #print "database update"
        str_sql="UPDATE atdml_document set "+"accuracy = '"+str(accuracy*100)+"%" \
            +"', status = 'learned', processed_date ='"+str(datetime.datetime.now()) \
            +"',ml_opts='"+j_str \
            +"', perf_measures='"+json.dumps(perf_measures) \
            +"', dataset_info='"+json.dumps(dataset_info) \
            +"' where id="+row_id_str
        ret=exec_sqlite.exec_sql(str_sql)
        print "INFO: Data update done! ret=", str(ret)
    else:
        print "INFO: accuracy = '"+str(accuracy*100)+"%"
    
    print 'INFO: total running time: %f' %(t1-t00)
    
    print 'INFO: Finished!'
    return 0
def feat_importance_firm(row_id_str, ds_id, hdfs_feat_dir, local_score_file,
                         sp_master, spark_rdd_compress,
                         spark_driver_maxResultSize, sp_exe_memory,
                         sp_core_max, zipout_dir, zipcode_dir, zip_file_name,
                         mongo_tuples, training_fraction, jobname, uploadtype,
                         description_file):

    # zip func in other files for Spark workers ================= ================
    zip_file_path = ml_util.ml_build_zip_file(zipout_dir,
                                              zipcode_dir,
                                              zip_file_name,
                                              prefix='zip_feature_util')
    print "INFO: zip_file_path=", zip_file_path

    # get_spark_context
    sc = ml_util.ml_get_spark_context(sp_master, spark_rdd_compress,
                                      spark_driver_maxResultSize,
                                      sp_exe_memory, sp_core_max, jobname,
                                      [zip_file_path])

    t0 = time()

    # get feature seq mapping from mongo
    if uploadtype == "MD5 List IN-dynamic":
        ### connect to database to get the column list which contains all column number of the corresponding feature
        key = "dict_dynamic"
        jstr_filter = '{"rid":' + row_id_str + ',"key":"' + key + '"}'
        jstr_proj = '{"value":1}'

        # get parent dataset's data
        if ds_id != row_id_str:
            jstr_filter = '{"rid":' + ds_id + ',"key":"' + key + '"}'

        doc = query_mongo.find_one_t(mongo_tuples, jstr_filter, jstr_proj)
        dic_list = doc['value']

        dic_all_columns = {}
        max_feature = 0
        # reverse dict{hashes:sequence number} ======
        for i in range(0, len(dic_list)):
            for key in dic_list[i]:
                dic_all_columns[eval(dic_list[i][key])] = key
                if eval(dic_list[i][key]) > max_feature:
                    max_feature = eval(dic_list[i][key])
        print "INFO: max_feature=", max_feature
        #print "dic_all_columns=",dic_all_columns # fid:numb,numb

    dirFile_loc = os.path.join(hdfs_feat_dir, "metadata")
    dirFolders = sc.textFile(dirFile_loc)

    hash_Folders = dirFolders.collect()
    #print "INFO: dirFile_loc=",dirFile_loc,", hash_Folders=",hash_Folders
    folder_list = [x.encode('UTF8') for x in hash_Folders]
    print "INFO: hdfs folder_list=", folder_list  #['dirty/', 'clean/']

    features_training = []
    labels_training = []
    names_training = []
    row_training = []
    col_training = []
    max_feat_training = 0
    row_num_training = 0
    features_testing = []
    labels_testing = []
    names_testing = []
    row_testing = []
    col_testing = []
    max_feat_testing = 0
    row_num_testing = 0

    # loop through hdfs folders; TBD
    for folder in folder_list:
        print "INFO: folder=", folder
        label = folder_list.index(folder) + 1
        print 'INFO: label=', label

        logFile_name = os.path.join(hdfs_feat_dir, folder, mtx_name_list)
        #print "logFile_name=",logFile_name
        logFile_data = os.path.join(hdfs_feat_dir, folder, mtx_libsvm)
        #print "logFile_data=",logFile_data

        logNames = sc.textFile(logFile_name).cache()
        logData = sc.textFile(logFile_data).cache()

        names = logNames.collect()
        data = logData.collect()
        name_l = [x.encode('UTF8') for x in names]
        feature_l = [x.encode('UTF8') for x in data]
        name_list = [names.strip() for names in name_l]
        feature_list = [features.strip() for features in feature_l]

        ##########data seperation######
        id_perm = data_seperation_random(name_list)

        num_names = len(name_list)
        print 'INFO: num of samples=', num_names
        num_train = int(training_portion * num_names)
        print 'INFO: num_train = ', num_train

        ########generate training data#########
        i = 0
        #print "INFO: generate training data"
        #print "INFO: len(id_perm)=",len(id_perm)
        while i < num_train:
            #print i, id_perm[i]
            features = feature_list[id_perm[i]]

            features = features.strip()
            feature_array = features.split(' ')
            labels_training.append(label)

            length = len(feature_array)
            j = 0
            while j < length:
                feature = feature_array[j]
                feat, value = feature.split(':', 2)
                row_training.append(i + row_num_training)
                col_training.append(int(feat) - 1)
                features_training.append(int(value))
                max_feat_training = max(max_feat_training, int(feat))
                j = j + 1
            i = i + 1
        row_num_training = row_num_training + num_train
        i = num_train
        ########generate testing data#########
        while i < num_names:

            ####for generating testing data folder####
            test_file_name = name_list[id_perm[i]]

            features = feature_list[id_perm[i]]

            features = features.strip()
            feature_array = features.split(' ')
            labels_testing.append(label)

            length = len(feature_array)
            j = 0
            while j < length:
                feature = feature_array[j]
                feat, value = feature.split(':', 2)
                row_testing.append(i - num_train + row_num_testing)
                col_testing.append(int(feat) - 1)
                features_testing.append(int(value))
                max_feat_testing = max(max_feat_testing, int(feat))
                j = j + 1
            i = i + 1
        row_num_testing = row_num_testing + (num_names - num_train)

    # end for loop here ========================

    col_num = max(max_feat_training, max_feat_testing)
    if max_feat_training < col_num:
        for i in range(0, row_num_training):
            for j in range(max_feat_training, col_num):
                features_training.append(0)
                row_training.append(i)
                col_training.append(j)
    elif max_feat_testing < col_num:
        for i in range(0, row_num_testing):
            for j in range(max_feat_testing, col_num):
                features_testing.append(0)
                row_testing.append(i)
                col_testing.append(j)

    features_training = array(features_training)
    row_training = array(row_training)
    col_training = array(col_training)
    #print "row_training:", row_training
    #print "INFO: col_training:", col_training
    len_col = len(col_training)
    print "INFO: col_num:", col_num
    labels_training = array(labels_training)

    features_testing = array(features_testing)
    row_testing = array(row_testing)

    col_testing = array(col_testing)
    labels_testing = array(labels_testing)

    sparse_mtx = csc_matrix((features_training, (row_training, col_training)),
                            shape=(row_num_training, col_num))
    #print "sparse_mtx.todense(), sparse_mtx.shape=",sparse_mtx.todense(), sparse_mtx.shape

    sparse_test = csc_matrix((features_testing, (row_testing, col_testing)),
                             shape=(row_num_testing, col_num))
    #print " sparse_test.todense(), sparse_test.shape=",sparse_test.todense(), sparse_test.shape

    clf = svm.LinearSVC()
    #clf = svm.SVC(C=0.1, kernel='rbf', degree=3, gamma=0.05, coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, random_state=None)
    #clf = svm.NuSVC(nu=0.3, kernel='rbf', degree=3, gamma=0.05, coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, verbose=False, max_iter=-1, random_state=None)
    #print "labels_training=",labels_training
    #print "sparse_mtx=",sparse_mtx
    clf.fit(sparse_mtx, labels_training)

    #print "INFO: model:intercept=",clf.intercept_
    #print "INFO: model:coef=",clf.coef_

    labels_pred = clf.predict(sparse_test)
    #print "labels_pred:", labels_pred

    accuracy = clf.score(sparse_test, labels_testing)
    #print "INFO: data folder=", hdfs_feat_dir
    print "INFO: accuracy=", accuracy

    #####################################################################
    ##################calculate feature importance with predication labels#######################
    #####################################################################
    AA = sparse_mtx.todense()
    BB = sparse_test.todense()
    labels_train_pred = clf.predict(sparse_mtx)
    labels_test_pred = labels_pred

    #print "###################################################################################"
    print "INFO: ======= Calculate feature importance with predication labels =================="
    #print "###################################################################################"
    dic_importance_label = {}

    for j in range(0, col_num):  ###for all features in the loop

        ##############################
        #print "====new way with sparse matrix========="
        curr_col_train = sparse_mtx.getcol(j)
        sum_col = curr_col_train.sum(0)
        positive_feature_number = int(sum_col.tolist()[0][0])

        labels_value = 3 - labels_train_pred
        dot_product = csr_matrix(np.array(labels_value)).dot(curr_col_train)
        sum_product = dot_product.sum(1)
        labels_positive_sum = int(sum_product.tolist()[0][0])

        sum_label_values = sum(labels_value)
        labels_negitive_sum = sum_label_values - labels_positive_sum

        ##############################
        #print "====new way with sparse matrix========="
        curr_col_test = sparse_test.getcol(j)
        sum_col = curr_col_test.sum(0)
        positive_feature_number = positive_feature_number + int(
            sum_col.tolist()[0][0])

        labels_value = 3 - labels_test_pred
        dot_product = csr_matrix(np.array(labels_value)).dot(curr_col_test)
        sum_product = dot_product.sum(1)
        labels_positive_sum = labels_positive_sum + int(
            sum_product.tolist()[0][0])

        sum_label_values = sum(labels_value)
        labels_negitive_sum = labels_negitive_sum + sum_label_values - int(
            sum_product.tolist()[0][0])

        n_total = row_num_training + row_num_testing
        negitive_feature_number = n_total - positive_feature_number
        if positive_feature_number == 0:
            #print "feature ", j+1, "all 0s!"
            dic_importance_label[j + 1] = -100
        elif negitive_feature_number == 0:
            #print "feature ", j+1, "all 1s!"
            dic_importance_label[j + 1] = -200
        else:
            q_positive = float(labels_positive_sum) / positive_feature_number
            q_negitive = float(labels_negitive_sum) / negitive_feature_number

            Q = (q_positive - q_negitive) * sqrt(
                float(q_positive) * q_negitive / float(n_total) /
                float(n_total))
            dic_importance_label[j + 1] = Q

    sorted_importance = sorted(dic_importance_label.items(),
                               key=operator.itemgetter(1),
                               reverse=True)
    print "INFO: ======= Feature Importance(FIRM score) ================"

    if os.path.exists(local_score_file):
        try:
            os.remove(local_score_file)
        except OSError, e:
            print("ERROR: %s - %s." % (e.local_score_file, e.strerror))
Example #6
0
def feat_importance_firm(row_id_str, ds_id, hdfs_feat_dir, local_score_file,
                         sp_master, spark_rdd_compress,
                         spark_driver_maxResultSize, sp_exe_memory,
                         sp_core_max, zipout_dir, zipcode_dir, zip_file_name,
                         mongo_tuples, training_fraction, jobname, uploadtype):

    # zip func in other files for Spark workers ================= ================
    zip_file_path = ml_util.ml_build_zip_file(zipout_dir,
                                              zipcode_dir,
                                              zip_file_name,
                                              prefix='zip_feature_util')
    print "INFO: zip_file_path=", zip_file_path

    # get_spark_context
    sc = ml_util.ml_get_spark_context(sp_master, spark_rdd_compress,
                                      spark_driver_maxResultSize,
                                      sp_exe_memory, sp_core_max, jobname,
                                      [zip_file_path])
    '''
    SparkContext.setSystemProperty('spark.rdd.compress', config.get('spark', 'spark_rdd_compress'))
    SparkContext.setSystemProperty('spark.driver.maxResultSize', config.get('spark', 'spark_driver_maxResultSize'))
    SparkContext.setSystemProperty('spark.executor.memory', args.exe_memory)
    SparkContext.setSystemProperty('spark.cores.max', args.core_max)
    sc = SparkContext(args.sp_master, 'feature_importance_FRIM:'+str(args.row_id))
    '''

    t0 = time()

    # get folder list (labels) from hdfs data_out/<id>/metadata  ==============
    dirFile_loc = os.path.join(hdfs_feat_dir, "metadata")
    dirFolders = sc.textFile(dirFile_loc)

    hash_Folders = dirFolders.collect()
    print "INFO: dirFile_loc=", dirFile_loc, ", hash_Folders=", hash_Folders
    folder_list = [x.encode('UTF8') for x in hash_Folders]
    print "INFO: folder_list=", folder_list  #['dirty/', 'clean/']

    # get feature seq : ngram hash mapping ==================================
    key = "dic_seq_hashes"  #{"123":"136,345"}
    jstr_filter = '{"rid":' + row_id_str + ',"key":"' + key + '"}'
    jstr_proj = '{"value":1}'

    # get parent dataset's data
    if ds_id != row_id_str:
        jstr_filter = '{"rid":' + ds_id + ',"key":"' + key + '"}'

    doc = query_mongo.find_one_t(mongo_tuples, jstr_filter, jstr_proj)
    dic_list = doc['value']

    dic_all_columns = dic_list
    feature_count = len(dic_list)

    #print "INFO: feature_count=",feature_count
    #print "dic_list=",dic_list #{u'123,345':u'136'}
    #print "dic_all_columns=",dic_all_columns # {1: u'8215,8216'}
    # end

    # get {hash : raw string} mapping ==================================
    key = "dic_hash_str"  #{"123":"openFile"}
    jstr_filter = '{"rid":' + row_id_str + ',"key":"' + key + '"}'
    jstr_proj = '{"value":1}'
    # get parent dataset's data
    if ds_id != row_id_str:
        jstr_filter = '{"rid":' + ds_id + ',"key":"' + key + '"}'

    doc = query_mongo.find_one_t(mongo_tuples, jstr_filter, jstr_proj)
    dic_hash_str = doc['value']
    '''
    # get folder list (labels) from hdfs data_out/<id>/libsvm  ==============
    libsvm_loc = os.path.join(hdfs_feat_dir , "libsvm_data")    

    print "INFO: libsvm_loc=", libsvm_loc
    samples_rdd = MLUtils.loadLibSVMFile(sc, libsvm_loc)
    '''

    # filename for featured data
    libsvm_data_file = os.path.join(hdfs_feat_dir, "libsvm_data")
    print "INFO: libsvm_data_file=", libsvm_data_file

    # load feature count file
    #feat_count_file=libsvm_data_file+"_feat_count"
    #feature_count=zip_feature_util.get_feature_count(sc,feat_count_file)
    print "INFO: feature_count=", feature_count

    #samples_rdd = MLUtils.loadLibSVMFile(sc, libsvm_data_file)
    # load sample RDD from text file
    #   also exclude selected features in sample ================ =====
    # format (LabeledPoint,hash) from str2LabeledPoint_hash()
    samples_rdd, feature_count = zip_feature_util.get_sample_rdd(
        sc, libsvm_data_file, feature_count, excluded_feat_cslist=None)

    labels_and_features_rdd = samples_rdd.map(lambda p:
                                              (p[0].label, p[0].features))

    all_data = labels_and_features_rdd.collect()
    features_list = [x.toArray() for _, x in all_data]
    labels_list_all = [x for x, _ in all_data]
    labels_list_all = np.array(labels_list_all)
    features_array = np.array(features_list)

    ### generate sparse matrix (csr) for all samples
    features_sparse_mtx = csr_matrix(features_array)

    ### randomly split the samples into training and testing data
    sparse_mtx, sparse_test, labels_training, labels_testing = \
        cross_validation.train_test_split(features_sparse_mtx, labels_list_all, test_size=(1-training_fraction))

    #print "INFO: sparse_mtx.shape=",sparse_mtx.shape
    #print "INFO: sparse_test.shape=",sparse_test.shape
    row_num_training = (sparse_mtx.shape)[0]
    row_num_testing = (sparse_test.shape)[0]

    # why use LinearSVC ?
    clf = svm.LinearSVC()
    #clf = svm.SVC(C=0.1, kernel='rbf', degree=3, gamma=0.05, coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, random_state=None)
    #clf = svm.NuSVC(nu=0.3, kernel='rbf', degree=3, gamma=0.05, coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, verbose=False, max_iter=-1, random_state=None)
    #print "labels_training=",labels_training
    #print "sparse_mtx=",sparse_mtx
    clf.fit(sparse_mtx, labels_training)

    #print "**model:intercept***"
    #print clf.intercept_
    #print "**model:coef***"
    #print clf.coef_
    col_num = len(clf.coef_[0])  # for n_classes==2
    print "INFO: col_num=", col_num

    labels_pred = clf.predict(sparse_test)
    #print "labels_pred:", labels_pred

    accuracy = clf.score(sparse_test, labels_testing)
    print "INFO: data folder:", hdfs_feat_dir
    print "INFO: accuracy: ", accuracy

    #####################################################################
    ##################calculate feature importance with predication labels#######################
    #####################################################################
    AA = sparse_mtx.todense()
    BB = sparse_test.todense()
    labels_train_pred = clf.predict(sparse_mtx)
    labels_test_pred = labels_pred

    print "INFO: ###################################################################################"
    print "INFO: ############calculate feature importance with predication labels###################"
    print "INFO: ###################################################################################"
    dic_importance_label = {}

    for j in range(0, col_num):  ###for all features in the loop

        ##############################
        #print "====new way with sparse matrix========="
        curr_col_train = sparse_mtx.getcol(j)
        sum_col = curr_col_train.sum(0)
        positive_feature_number = int(sum_col.tolist()[0][0])

        labels_value = 3 - labels_train_pred
        dot_product = csr_matrix(np.array(labels_value)).dot(curr_col_train)
        sum_product = dot_product.sum(1)
        labels_positive_sum = int(sum_product.tolist()[0][0])

        sum_label_values = sum(labels_value)
        labels_negitive_sum = sum_label_values - labels_positive_sum

        ##############################
        #print "====new way with sparse matrix========="
        curr_col_test = sparse_test.getcol(j)
        sum_col = curr_col_test.sum(0)
        positive_feature_number = positive_feature_number + int(
            sum_col.tolist()[0][0])

        labels_value = 3 - labels_test_pred
        dot_product = csr_matrix(np.array(labels_value)).dot(curr_col_test)
        sum_product = dot_product.sum(1)
        labels_positive_sum = labels_positive_sum + int(
            sum_product.tolist()[0][0])

        sum_label_values = sum(labels_value)
        labels_negitive_sum = labels_negitive_sum + sum_label_values - int(
            sum_product.tolist()[0][0])

        n_total = row_num_training + row_num_testing
        negitive_feature_number = n_total - positive_feature_number
        if positive_feature_number == 0:
            #print "feature ", j+1, "all 0s!"
            dic_importance_label[j + 1] = -100
        elif negitive_feature_number == 0:
            #print "feature ", j+1, "all 1s!"
            dic_importance_label[j + 1] = -200
        else:
            q_positive = float(labels_positive_sum) / positive_feature_number
            q_negitive = float(labels_negitive_sum) / negitive_feature_number

            Q = (q_positive - q_negitive) * sqrt(
                float(q_positive) * q_negitive / float(n_total) /
                float(n_total))
            dic_importance_label[j + 1] = Q

    sorted_importance = sorted(dic_importance_label.items(),
                               key=operator.itemgetter(1),
                               reverse=True)

    print "INFO: =======Feature Importance(FIRM score)================"

    if os.path.exists(local_score_file):
        try:
            os.remove(local_score_file)
        except OSError, e:
            print("ERROR: %s - %s." % (e.local_score_file, e.strerror))
def train(row_id_str, ds_id, hdfs_feat_dir, local_out_dir, ml_opts_jstr,
          sp_master, spark_rdd_compress, spark_driver_maxResultSize,
          sp_exe_memory, sp_core_max, zipout_dir, zipcode_dir, zip_file_name,
          mongo_tuples, labelnameflag, fromweb, src_filename, jobname,
          model_data_folder):

    # create zip files for Spark workers ================= ================
    zip_file_path = ml_build_zip_file(zipout_dir,
                                      zipcode_dir,
                                      zip_file_name,
                                      prefix='zip_feature_util')
    print "INFO: zip_file_path=", zip_file_path

    #data_folder = hdfs_feat_dir + "/"
    #local_out_dir = local_out_dir + "/"
    if not os.path.exists(local_out_dir):
        os.makedirs(local_out_dir)

    # ML model filename ====
    model_fname = os.path.join(model_data_folder, row_id_str + '.pkl')
    print "INFO: model_data_folder=", model_data_folder
    # create out folders and clean up old model files ====
    ml_util.ml_prepare_output_dirs(row_id_str, local_out_dir,
                                   model_data_folder, model_fname)

    # init Spark context ====
    sc = ml_util.ml_get_spark_context(sp_master, spark_rdd_compress,
                                      spark_driver_maxResultSize,
                                      sp_exe_memory, sp_core_max, jobname,
                                      [zip_file_path])

    # start here =================================================================== ===============
    t0 = time()

    ### load libsvm file: may or may not be PCA-ed ###
    libsvm_data_file = os.path.join(hdfs_feat_dir, src_filename)
    print "INFO: libsvm_data_file=", libsvm_data_file

    # feature count is a variable if PCA
    feature_count = 0

    # samples_rdd may be from PCAed data
    # load sample RDD from text file
    # format (LabeledPoint,hash) from str2LabeledPoint_hash()
    samples_rdd, feature_count = zip_feature_util.get_sample_rdd(
        sc, libsvm_data_file, feature_count, '')

    # collect all data to local for processing ===============
    all_data = samples_rdd.collect()
    total_sample_count = len(all_data)
    # 2-D array, may be PCAed
    features_list = [x.features.toArray() for x, _ in all_data]
    # label array
    labels_list_all = [x.label for x, _ in all_data]
    # hash array
    hash_list_all = [x for _, x in all_data]
    # convert to np array
    features_array_reduced = np.array(features_list)
    hash_list_all = np.array(hash_list_all)
    labels_list_all = np.array(labels_list_all)
    true_label_array = np.array(labels_list_all, dtype=np.int8)

    print "INFO: total_sample_count=", total_sample_count
    print "INFO: features_array_reduced.shape=", features_array_reduced.shape
    print "INFO: labels_list_all.shape=", labels_list_all.shape
    print "INFO: true_label_array.shape=", true_label_array.shape

    t1 = time()
    print 'INFO: data generating time: %f' % (t1 - t0)

    ###############################################
    ########## build learning model ###############
    ###############################################

    ### parse parameters and generate the model ###
    (model, alg, n_clusters) = parse_para_and_get_model(ml_opts_jstr)
    if model is None:
        return

    labels_kmeans = None
    #### fit the model to training dataset ####
    try:
        model.fit(features_array_reduced)
        labels_kmeans = model.labels_  #'numpy.ndarray'

    except:
        print "ERROR: Error in model.fit(): ", "model=", model, ", sys.exc_info:", sys.exc_info(
        )[0]
        return

    #### save clf for future use ####
    #joblib.dump(model, model_data_folder + row_id_str+'.pkl')
    joblib.dump(model, model_fname)

    #print "**model:intercept***"
    #print clf.intercept_

    print "INFO: model type=", type(model), " model=", model

    ###################################################
    ### generate label names (family names) ###########
    ### connect to database to get the column list which contains all column number of the corresponding feature####
    ###################################################

    if labelnameflag == 1:
        key = "dic_name_label"
        jstr_filter = '{"rid":' + row_id_str + ',"key":"' + key + '"}'
        jstr_proj = '{"value":1}'

        # get parent dataset's data
        if ds_id != row_id_str:
            jstr_filter = '{"rid":' + ds_id + ',"key":"' + key + '"}'

        doc = query_mongo.find_one_t(mongo_tuples, jstr_filter, jstr_proj)
        dic_list = doc['value']

        label_dic = {}
        for i in range(0, len(dic_list)):
            for key in dic_list[i]:
                label_dic[dic_list[i][key]] = key.encode('UTF8')
        print "INFO: label_dic:", label_dic
    else:
        label_dic = {}
        label_set = set(labels_list_all)
        for label_value in label_set:
            label_dic[int(label_value)] = str(int(label_value))
        print "INFO: generated label_dic:", label_dic

    labels_list = []
    for key in sorted(label_dic):
        labels_list.append(label_dic[key])
    print "INFO: labels_list=", labels_list

    #Adjusted Mutual Information between two clusterings
    amis = adjusted_mutual_info_score(labels_list_all, labels_kmeans)
    print "INFO: Adjusted_mutual_info_score=", amis
    #Similarity measure between two clusterings
    ars = adjusted_rand_score(labels_list_all, labels_kmeans)
    print "INFO: Adjusted_rand_score=", ars

    ###################################################
    #######plot histogram                       ####
    ###################################################
    plot_col_num = int(math.ceil(math.sqrt(n_clusters)))
    figsize = (4 * plot_col_num,
               3 * int(math.ceil(n_clusters * 1.0 / plot_col_num)))
    print "INFO: labels_list_all.shape=", labels_list_all.shape, "labels_kmeans.shape=", labels_kmeans.shape
    print "INFO: labels_list_all t=", type(
        labels_list_all), "labels_kmeans t=", type(labels_kmeans)
    print "INFO: n_clusters=", n_clusters, ",label_dic=", label_dic
    print "INFO: plot_col_num=", plot_col_num, ",figsize=", figsize, ",local_out_dir=", local_out_dir

    # kmeans histogram
    _, p_true = ml_plot_kmeans_histogram_subfigures(labels_list_all,
                                                    labels_kmeans,
                                                    n_clusters,
                                                    names=label_dic,
                                                    plot_col_num=plot_col_num,
                                                    figsize=figsize,
                                                    folder=local_out_dir,
                                                    rid=row_id_str)
    # normalized kmeans histogram
    _, p_true_norm = ml_plot_kmeans_histogram_subfigures(
        labels_list_all,
        labels_kmeans,
        n_clusters,
        names=label_dic,
        plot_col_num=plot_col_num,
        figsize=figsize,
        normalize=True,
        folder=local_out_dir,
        rid=row_id_str)

    ####plot "reverse" histogram with labels ####
    #num_bars = len(np.unique(labels_list_all))
    num_bars = max(labels_list_all) + 1
    figsize = (4 * plot_col_num,
               3 * int(math.ceil(num_bars * 1.0 / plot_col_num)))

    _, p_cluster = ml_plot_kmeans_histogram_subfigures(
        labels_kmeans,
        labels_list_all,
        num_bars,
        names=label_dic,
        plot_col_num=plot_col_num,
        figsize=figsize,
        reverse=True,
        folder=local_out_dir,
        rid=row_id_str)

    #### plot dot figures ####
    #mtx_label = model.labels_
    mtx_center = model.cluster_centers_
    # dot plot for Kmeans   ===========
    filename = os.path.join(local_out_dir, row_id_str + '_cluster.png')
    filename_3d = os.path.join(local_out_dir, row_id_str + '_cluster_3d.json')
    ml_plot_kmeans_dot_graph_save_file(features_array_reduced,
                                       labels_kmeans,
                                       mtx_center,
                                       n_clusters,
                                       figsize=(10, 7),
                                       filename=filename,
                                       title='KMeans',
                                       filename_3d=filename_3d)
    #print "features_array_reduced s=",features_array_reduced.shape

    # dot plot for True Labels  ===========
    filename = os.path.join(local_out_dir, row_id_str + '_cluster_tl.png')
    filename_3d = os.path.join(local_out_dir,
                               row_id_str + '_cluster_3d_tl.json')
    ml_plot_kmeans_dot_graph_save_file(features_array_reduced,
                                       true_label_array,
                                       mtx_center,
                                       n_clusters,
                                       figsize=(10, 7),
                                       filename=filename,
                                       title='True Labels',
                                       filename_3d=filename_3d)

    dataset_info = {
        "training_fraction": 1,
        "class_count": n_clusters,
        "dataset_count": total_sample_count
    }
    # only update db for web request   ===========
    if fromweb == "1":
        #print "database update"
        str_sql="UPDATE atdml_document set accuracy = '" \
            +"', status = 'learned', processed_date ='"+str(datetime.datetime.now()) \
            +"', total_feature_numb='"+str(feature_count) \
            +"', perf_measures='{}" \
            +"', dataset_info='"+json.dumps(dataset_info) \
            +"' where id="+row_id_str
        ret = exec_sqlite.exec_sql(str_sql)
        print "INFO: Data update done! ret=", str(ret)
    else:
        print "INFO: accuracy = '" + str(accuracy * 100) + "%"

    t1 = time()
    print 'INFO: running time: %f' % (t1 - t0)

    #print 'Finished!'
    return 0