Example #1
0
def main(_):

    attrs = conf.__dict__['__flags']
    pp(attrs)

    dataset, img_feature, train_data = get_data(conf.input_json,
                                                conf.input_img_h5,
                                                conf.input_ques_h5,
                                                conf.img_norm)

    gpu_options = tf.GPUOptions(
        per_process_gpu_memory_fraction=calc_gpu_fraction(conf.gpu_fraction))

    with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) as sess:
        model = question_generator.Question_Generator(sess, conf, dataset,
                                                      img_feature, train_data)

        if conf.is_train:
            model.build_model()
            model.train()
        else:
            model.build_generator()
            model.test(test_image_path=conf.test_image_path,
                       model_path=conf.test_model_path,
                       maxlen=26)
def home():
    image_path_array = request.json['image_path_array']

    image_paths = [
        each_path[1:-1].replace('////', '/')
        for each_path in image_path_array[1:-1].split(', ')
    ]
    questions = []

    gpu_options = tf.GPUOptions(
        per_process_gpu_memory_fraction=calc_gpu_fraction(conf.gpu_fraction))
    with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) as sess:
        model = question_generator.Question_Generator(sess, conf, dataset,
                                                      img_feature, train_data)
        model.build_generator()

        for image_path in image_paths:
            question = model.test(test_image_path=image_path,
                                  model_path=conf.test_model_path,
                                  maxlen=26)
            questions.append(question)

    return jsonify({'result': questions}), 200
Example #3
0
def main(_):

    attrs = conf.__dict__['__flags']
    pp(attrs)

    train_data = pickle.load(open('data/prepro.pkl', 'rb'))
    dataset = pickle.load(open('assets/data_prepro.json', 'rb'))
    gpu_options = tf.GPUOptions(
        per_process_gpu_memory_fraction=calc_gpu_fraction(conf.gpu_fraction))

    with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) as sess:
        model = question_generator.Question_Generator(sess, conf, dataset,
                                                      train_data)

        if conf.is_train:
            model.build_model()
            model.train()

        else:

            model.build_generator()
            model.test(test_image_path=conf.test_image_path,
                       model_path=conf.test_model_path,
                       maxlen=26)