Example #1
0
 def test_solve_bigger(self):
     n = 14
     chi = 16
     ham = MPO_ham_mbl(n, dh=8, seed=42)
     p0 = MPS_computational_state('00110111000101')
     dmrgx = DMRGX(ham, p0, chi)
     assert dmrgx.solve(tol=1e-5, sweep_sequence='R')
     assert dmrgx.state[0].dtype == float
Example #2
0
    def test_explicit_sweeps(self):
        # import pdb; pdb.set_trace()
        n = 8
        chi = 16
        ham = MPO_ham_mbl(n, dh=5, run=42)
        p0 = MPS_neel_state(n).expand_bond_dimension(chi)

        b0 = p0.H
        align_TN_1D(p0, ham, b0, inplace=True)
        en0 = np.asscalar(p0 & ham & b0 ^ ...)

        dmrgx = DMRGX(ham, p0, chi)
        dmrgx.sweep_right()
        en1 = dmrgx.sweep_left(canonize=False)
        assert en0 != en1

        dmrgx.sweep_right(canonize=False)
        en = dmrgx.sweep_right(canonize=True)

        # check normalized
        assert_allclose(dmrgx._k.H @ dmrgx._k, 1.0)

        k = dmrgx._k.to_dense()
        h = ham.to_dense()
        el, ev = eigsys(h)

        # check variance very low
        assert np.abs((k.H @ h @ h @ k) - (k.H @ h @ k)**2) < 1e-12

        # check exactly one eigenvalue matched well
        assert np.sum(np.abs(el - en) < 1e-12) == 1

        # check exactly one eigenvector is matched with high fidelity
        ovlps = (ev.H @ k).A**2
        big_ovlps = ovlps[ovlps > 1e-12]
        assert_allclose(big_ovlps, [1])

        # check fully
        assert is_eigenvector(k, h)
Example #3
0
    def test_explicit_sweeps(self):
        n = 8
        chi = 16
        ham = MPO_ham_mbl(n, dh=4, seed=42)
        p0 = MPS_rand_state(n, 2).expand_bond_dimension(chi)

        b0 = p0.H
        p0.align_(ham, b0)
        en0 = (p0 & ham & b0) ^ ...
        dmrgx = DMRGX(ham, p0, chi)
        dmrgx.sweep_right()
        en1 = dmrgx.sweep_left(canonize=False)
        assert en0 != en1

        dmrgx.sweep_right(canonize=False)
        en = dmrgx.sweep_right(canonize=True)

        # check normalized
        assert_allclose(dmrgx._k.H @ dmrgx._k, 1.0)

        k = dmrgx._k.to_dense()
        h = ham.to_dense()
        el, ev = eigh(h)

        # check variance very low
        assert np.abs((k.H @ h @ h @ k) - (k.H @ h @ k)**2) < 1e-12

        # check exactly one eigenvalue matched well
        assert np.sum(np.abs(el - en) < 1e-12) == 1

        # check exactly one eigenvector is matched with high fidelity
        ovlps = (ev.H @ k).A**2
        big_ovlps = ovlps[ovlps > 1e-12]
        assert_allclose(big_ovlps, [1])

        # check fully
        assert is_eigenvector(k, h, tol=1e-10)