Example #1
0
def _steadystate_svd_dense(L, ss_args):
    """
    Find the steady state(s) of an open quantum system by solving for the
    nullspace of the Liouvillian.
    """
    ss_args['info'].pop('weight', None)
    atol = 1e-12
    rtol = 1e-12
    if settings.debug:
        logger.debug('Starting SVD solver.')
    _svd_start = time.time()
    u, s, vh = svd(L.full(), full_matrices=False)
    tol = max(atol, rtol * s[0])
    nnz = (s >= tol).sum()
    ns = vh[nnz:].conj().T
    _svd_end = time.time()
    ss_args['info']['solution_time'] = _svd_end - _svd_start
    if ss_args['all_states']:
        rhoss_list = []
        for n in range(ns.shape[1]):
            rhoss = Qobj(vec2mat(ns[:, n]), dims=L.dims[0])
            rhoss_list.append(rhoss / rhoss.tr())
        if ss_args['return_info']:
            return rhoss_list, ss_args['info']
        else:
            if ss_args['return_info']:
                return rhoss_list, ss_args['info']
            else:
                return rhoss_list
    else:
        rhoss = Qobj(vec2mat(ns[:, 0]), dims=L.dims[0])
        return rhoss / rhoss.tr()
Example #2
0
def _steadystate_svd_dense(L, atol=1e-12, rtol=0, all_steadystates=False,
                           verbose=False):
    """
    Find the steady state(s) of an open quantum system by solving for the
    nullspace of the Liouvillian.
    """
    if verbose:
        print('Starting SVD solver...')
        start_time = time.time()

    u, s, vh = svd(L.full(), full_matrices=False)
    tol = max(atol, rtol * s[0])
    nnz = (s >= tol).sum()
    ns = vh[nnz:].conj().T

    if verbose:
        print('SVD solver time: ', time.time() - start_time)

    if all_steadystates:
        rhoss_list = []
        for n in range(ns.shape[1]):
            rhoss = Qobj(vec2mat(ns[:, n]), dims=L.dims[0])
            rhoss_list.append(rhoss / rhoss.tr())
        return rhoss_list

    else:
        rhoss = Qobj(vec2mat(ns[:, 0]), dims=L.dims[0])
        return rhoss / rhoss.tr()
Example #3
0
def _steadystate_svd_dense(L,
                           atol=1e-12,
                           rtol=0,
                           all_steadystates=False,
                           verbose=False):
    """
    Find the steady state(s) of an open quantum system by solving for the
    nullspace of the Liouvillian.
    """
    if verbose:
        print('Starting SVD solver...')
        start_time = time.time()

    u, s, vh = svd(L.full(), full_matrices=False)
    tol = max(atol, rtol * s[0])
    nnz = (s >= tol).sum()
    ns = vh[nnz:].conj().T

    if verbose:
        print('SVD solver time: ', time.time() - start_time)

    if all_steadystates:
        rhoss_list = []
        for n in range(ns.shape[1]):
            rhoss = Qobj(vec2mat(ns[:, n]), dims=L.dims[0])
            rhoss_list.append(rhoss / rhoss.tr())
        return rhoss_list

    else:
        rhoss = Qobj(vec2mat(ns[:, 0]), dims=L.dims[0])
        return rhoss / rhoss.tr()
Example #4
0
def _steadystate_svd_dense(L, ss_args):
    """
    Find the steady state(s) of an open quantum system by solving for the
    nullspace of the Liouvillian.
    """
    ss_args['info'].pop('weight', None)
    atol = 1e-12
    rtol = 1e-12
    if settings.debug:
        logger.debug('Starting SVD solver.')
    _svd_start = time.time()
    u, s, vh = svd(L.full(), full_matrices=False)
    tol = max(atol, rtol * s[0])
    nnz = (s >= tol).sum()
    ns = vh[nnz:].conj().T
    _svd_end = time.time()
    ss_args['info']['solution_time'] = _svd_end-_svd_start
    if ss_args['all_states']:
        rhoss_list = []
        for n in range(ns.shape[1]):
            rhoss = Qobj(vec2mat(ns[:, n]), dims=L.dims[0])
            rhoss_list.append(rhoss / rhoss.tr())
        if ss_args['return_info']:
            return rhoss_list, ss_args['info']
        else:
            if ss_args['return_info']:
                return rhoss_list, ss_args['info']
            else:
                return rhoss_list
    else:
        rhoss = Qobj(vec2mat(ns[:, 0]), dims=L.dims[0])
        return rhoss / rhoss.tr()
Example #5
0
def _steadystate_svd_dense(L, ss_args):
    """
    Find the steady state(s) of an open quantum system by solving for the
    nullspace of the Liouvillian.
    """
    atol = 1e-12
    rtol = 1e-12
    if settings.debug:
        print('Starting SVD solver...')

    u, s, vh = svd(L.full(), full_matrices=False)
    tol = max(atol, rtol * s[0])
    nnz = (s >= tol).sum()
    ns = vh[nnz:].conj().T

    if ss_args['all_states']:
        rhoss_list = []
        for n in range(ns.shape[1]):
            rhoss = Qobj(vec2mat(ns[:, n]), dims=L.dims[0])
            rhoss_list.append(rhoss / rhoss.tr())
        return rhoss_list

    else:
        rhoss = Qobj(vec2mat(ns[:, 0]), dims=L.dims[0])
        return rhoss / rhoss.tr()
Example #6
0
def _steadystate_eigen(L, ss_args):
    """
    Internal function for solving the steady state problem by
    finding the eigenvector corresponding to the zero eigenvalue
    of the Liouvillian using ARPACK.
    """
    ss_args['info'].pop('weight', None)
    if settings.debug:
        logger.debug('Starting Eigen solver.')

    dims = L.dims[0]
    L = L.data.tocsc()

    if ss_args['use_rcm']:
        ss_args['info']['perm'].append('rcm')
        if settings.debug:
            old_band = sp_bandwidth(L)[0]
            logger.debug('Original bandwidth: %i' % old_band)
        perm = sp.csgraph.reverse_cuthill_mckee(L)
        rev_perm = np.argsort(perm)
        L = sp_permute(L, perm, perm, 'csc')
        if settings.debug:
            rcm_band = sp_bandwidth(L)[0]
            logger.debug('RCM bandwidth: %i' % rcm_band)
            logger.debug('Bandwidth reduction factor: %f' %
                         (old_band / rcm_band))

    _eigen_start = time.time()
    eigval, eigvec = eigs(L,
                          k=1,
                          sigma=1e-15,
                          tol=ss_args['tol'],
                          which='LM',
                          maxiter=ss_args['maxiter'])
    _eigen_end = time.time()
    ss_args['info']['solution_time'] = _eigen_end - _eigen_start
    if ss_args['return_info']:
        ss_args['info']['residual_norm'] = la.norm(L * eigvec, np.inf)
    if ss_args['use_rcm']:
        eigvec = eigvec[np.ix_(rev_perm, )]
    _temp = vec2mat(eigvec)
    data = dense2D_to_fastcsr_fmode(_temp, _temp.shape[0], _temp.shape[1])
    data = 0.5 * (data + data.H)
    out = Qobj(data, dims=dims, isherm=True)
    if ss_args['return_info']:
        return out / out.tr(), ss_args['info']
    else:
        return out / out.tr()
Example #7
0
def propagator_steadystate(U):
    """Find the steady state for successive applications of the propagator
    :math:`U`.

    Parameters
    ----------
    U : qobj
        Operator representing the propagator.

    Returns
    -------
    a : qobj
        Instance representing the steady-state density matrix.

    """

    evals, evecs = la.eig(U.full())

    ev_min, ev_idx = _get_min_and_index(abs(evals - 1.0))

    evecs = evecs.T
    rho = Qobj(vec2mat(evecs[ev_idx]), dims=U.dims[0])
    rho = rho * (1.0 / rho.tr())
    rho = 0.5 * (rho + rho.dag())  # make sure rho is herm
    return rho
Example #8
0
def propagator_steadystate(U):
    """Find the steady state for successive applications of the propagator
    :math:`U`.

    Parameters
    ----------
    U : qobj
        Operator representing the propagator.

    Returns
    -------
    a : qobj
        Instance representing the steady-state density matrix.

    """

    evals, evecs = la.eig(U.full())

    ev_min, ev_idx = _get_min_and_index(abs(evals - 1.0))

    evecs = evecs.T
    rho = Qobj(vec2mat(evecs[ev_idx]), dims=U.dims[0])
    rho = rho * (1.0 / rho.tr())
    rho = 0.5 * (rho + rho.dag())  # make sure rho is herm
    return rho
Example #9
0
def _steadystate_eigen(L, ss_args):
    """
    Internal function for solving the steady state problem by
    finding the eigenvector corresponding to the zero eigenvalue
    of the Liouvillian using ARPACK.
    """
    if settings.debug:
        print('Starting Eigen solver...')

    dims = L.dims[0]
    shape = prod(dims[0])
    L = L.data.tocsc()

    if ss_args['use_rcm']:
        if settings.debug:
            old_band = sp_bandwidth(L)[0]
            print('Original bandwidth:', old_band)
        perm = reverse_cuthill_mckee(L)
        rev_perm = np.argsort(perm)
        L = sp_permute(L, perm, perm, 'csc')
        if settings.debug:
            rcm_band = sp_bandwidth(L)[0]
            print('RCM bandwidth:', rcm_band)
            print('Bandwidth reduction factor:', round(old_band/rcm_band, 1))

    eigval, eigvec = eigs(L, k=1, sigma=1e-15, tol=ss_args['tol'],
                          which='LM', maxiter=ss_args['maxiter'])

    if ss_args['use_rcm']:
        eigvec = eigvec[np.ix_(rev_perm,)]

    data = vec2mat(eigvec)
    data = 0.5 * (data + data.conj().T)
    out = Qobj(data, dims=dims, isherm=True)
    return out/out.tr()
Example #10
0
def _steadystate_eigen(L, ss_args):
    """
    Internal function for solving the steady state problem by
    finding the eigenvector corresponding to the zero eigenvalue
    of the Liouvillian using ARPACK.
    """
    ss_args['info'].pop('weight', None)
    if settings.debug:
        print('Starting Eigen solver...')

    dims = L.dims[0]
    shape = prod(dims[0])
    L = L.data.tocsc()

    if ss_args['use_rcm']:
        ss_args['info']['perm'].append('rcm')
        if settings.debug:
            old_band = sp_bandwidth(L)[0]
            print('Original bandwidth:', old_band)
        perm = reverse_cuthill_mckee(L)
        rev_perm = np.argsort(perm)
        L = sp_permute(L, perm, perm, 'csc')
        if settings.debug:
            rcm_band = sp_bandwidth(L)[0]
            print('RCM bandwidth:', rcm_band)
            print('Bandwidth reduction factor:', round(old_band / rcm_band, 1))

    _eigen_start = time.time()
    eigval, eigvec = eigs(L,
                          k=1,
                          sigma=1e-15,
                          tol=ss_args['tol'],
                          which='LM',
                          maxiter=ss_args['maxiter'])
    _eigen_end = time.time()
    ss_args['info']['solution_time'] = _eigen_end - _eigen_start
    if ss_args['use_rcm']:
        eigvec = eigvec[np.ix_(rev_perm, )]

    data = vec2mat(eigvec)
    data = 0.5 * (data + data.conj().T)
    out = Qobj(data, dims=dims, isherm=True)
    if ss_args['return_info']:
        return out / out.tr(), ss_args['info']
    else:
        return out / out.tr()
Example #11
0
def _steadystate_eigen(L, ss_args):
    """
    Internal function for solving the steady state problem by
    finding the eigenvector corresponding to the zero eigenvalue
    of the Liouvillian using ARPACK.
    """
    ss_args['info'].pop('weight', None)
    if settings.debug:
        logger.debug('Starting Eigen solver.')

    dims = L.dims[0]
    L = L.data.tocsc()

    if ss_args['use_rcm']:
        ss_args['info']['perm'].append('rcm')
        if settings.debug:
            old_band = sp_bandwidth(L)[0]
            logger.debug('Original bandwidth: %i' % old_band)
        perm = reverse_cuthill_mckee(L)
        rev_perm = np.argsort(perm)
        L = sp_permute(L, perm, perm, 'csc')
        if settings.debug:
            rcm_band = sp_bandwidth(L)[0]
            logger.debug('RCM bandwidth: %i' % rcm_band)
            logger.debug('Bandwidth reduction factor: %f' %
                         (old_band/rcm_band))

    _eigen_start = time.time()
    eigval, eigvec = eigs(L, k=1, sigma=1e-15, tol=ss_args['tol'],
                          which='LM', maxiter=ss_args['maxiter'])
    _eigen_end = time.time()
    ss_args['info']['solution_time'] = _eigen_end - _eigen_start
    if ss_args['return_info']:
        ss_args['info']['residual_norm'] = la.norm(L*eigvec, np.inf)
    if ss_args['use_rcm']:
        eigvec = eigvec[np.ix_(rev_perm,)]
    _temp = vec2mat(eigvec)
    data = dense2D_to_fastcsr_fmode(_temp, _temp.shape[0], _temp.shape[1])
    data = 0.5 * (data + data.H)
    out = Qobj(data, dims=dims, isherm=True)
    if ss_args['return_info']:
        return out/out.tr(), ss_args['info']
    else:
        return out/out.tr()
Example #12
0
def test_tidyup():
    small = Qobj([[1e-2, 0], [0, 1]])
    small.tidyup(1e-1)
    assert small.tr() == 1