def test_partial_transpose_comparison():
    """partial transpose: comparing sparse and dense implementations"""

    N = 10
    rho = tensor(rand_dm(N, density=0.5), rand_dm(N, density=0.5))

    # partial transpose of system 1
    rho_pt1 = partial_transpose(rho, [1, 0], method="dense")
    rho_pt2 = partial_transpose(rho, [1, 0], method="sparse")
    np.abs(np.max(rho_pt1.full() - rho_pt1.full())) < 1e-12

    # partial transpose of system 2
    rho_pt1 = partial_transpose(rho, [0, 1], method="dense")
    rho_pt2 = partial_transpose(rho, [0, 1], method="sparse")
    np.abs(np.max(rho_pt1.full() - rho_pt2.full())) < 1e-12
def test_partial_transpose_randomized():
    """partial transpose: randomized tests on tripartite system"""

    rho = tensor(rand_dm(2, density=1),
                 rand_dm(2, density=1),
                 rand_dm(2, density=1))

    mask = np.random.randint(2, size=3)

    rho_pt_ref = _partial_transpose_reference(rho, mask)

    rho_pt1 = partial_transpose(rho, mask, method="dense")
    np.abs(np.max(rho_pt1.full() - rho_pt_ref.full())) < 1e-12

    rho_pt2 = partial_transpose(rho, mask, method="sparse")
    np.abs(np.max(rho_pt2.full() - rho_pt_ref.full())) < 1e-12
Example #3
0
def test_EntropyConditional():
    "Entropy: Conditional entropy"
    # test_ S(A,B|C,D)<=S(A|C)+S(B|D)
    rhos = [
        rand_dm(16, dims=[[2, 2, 2, 2], [2, 2, 2, 2]], pure=True)
        for k in range(20)
    ]

    for ABCD in rhos:
        AC = ptrace(ABCD, [0, 2])
        BD = ptrace(ABCD, [1, 3])
        assert_equal(
            entropy_conditional(ABCD, [2, 3]) <=
            (entropy_conditional(AC, 1) + entropy_conditional(BD, 1)), True)

    # test_ S(A|B,C)<=S(A|B)
    rhos = [
        rand_dm(8, dims=[[2, 2, 2], [2, 2, 2]], pure=True) for k in range(20)
    ]

    for ABC in rhos:
        AB = ptrace(ABC, [0, 1])
        assert_equal(
            entropy_conditional(ABC, [1, 2]) <= entropy_conditional(AB, 1),
            True)
Example #4
0
class TestTypeFromDims:
    @pytest.mark.parametrize(["base", "expected", "enforce_square"], [
        pytest.param([[2], [2]], 'oper', True),
        pytest.param([[2, 3], [2, 3]], 'oper', True),
        pytest.param([[2], [3]], 'other', True),
        pytest.param([[2], [3]], 'oper', False),
        pytest.param([[2], [1]], 'ket', True),
        pytest.param([[1], [2]], 'bra', True),
        pytest.param([[[2, 3], [2, 3]], [1]], 'operator-ket', True),
        pytest.param([[1], [[2, 3], [2, 3]]], 'operator-bra', True),
        pytest.param([[[3], [3]], [[2, 3], [2, 3]]], 'other', True),
        pytest.param([[[3], [3]], [[2, 3], [2, 3]]], 'super', False),
        pytest.param([[[2], [3, 3]], [[3], [2, 3]]], 'other', True),
    ])
    def test_type_from_dims(self, base, expected, enforce_square):
        assert type_from_dims(base, enforce_square=enforce_square) == expected

    @pytest.mark.parametrize("qobj", [
        pytest.param(qutip.rand_ket(10), id='ket'),
        pytest.param(qutip.rand_ket(10).dag(), id='bra'),
        pytest.param(qutip.rand_dm(10), id='oper'),
        pytest.param(qutip.to_super(qutip.rand_dm(10)), id='super'),
    ])
    def test_qobj_dims_match_qobj(self, qobj):
        assert type_from_dims(qobj.dims) == qobj.type
Example #5
0
def test_fidelity_max_dm():
    """Tests for density matrices with respect to themselves to be equal to 1 (max)"""
    for _ in range(10):
        rho1 = jnp.asarray(rand_dm(25))
        rho2 = jnp.asarray(rand_dm(25))
        assert_almost_equal(fidelity(rho1, rho1), 1.0, decimal=4)
        assert_almost_equal(fidelity(rho2, rho2), 1.0, decimal=4)
Example #6
0
 def test_random_rho_sigma(self):
     rho = qutip.rand_dm(8, pure=False)
     sigma = qutip.rand_dm(8, pure=False)
     rel = qutip.entropy_relative(rho, sigma)
     assert rel >= 0
     assert rel == pytest.approx(
         self._simple_relative_entropy_implementation(rho, sigma, np.log))
Example #7
0
 def test_invariant_under_unitary_transformation(self, dimension):
     rho1 = rand_dm(dimension, 0.25)
     rho2 = rand_dm(dimension, 0.25)
     U = rand_unitary(dimension, 0.25)
     D = tracedist(rho1, rho2)
     DU = tracedist(U * rho1 * U.dag(), U * rho2 * U.dag())
     assert D == pytest.approx(DU, rel=1e-5)
Example #8
0
 def test_invariant_under_unitary_transformation(self, dimension):
     rho1 = rand_dm(dimension, 0.25)
     rho2 = rand_dm(dimension, 0.25)
     U = rand_unitary(dimension, 0.25)
     F = fidelity(rho1, rho2)
     FU = fidelity(U * rho1 * U.dag(), U * rho2 * U.dag())
     assert F == pytest.approx(FU, rel=1e-5)
Example #9
0
def test_fidelity_bounded_mixedmixed(tol=1e-7):
    """Tests for boundedness of fidelity among mixed states to be between [0, 1]"""
    for _ in range(10):
        rho1 = jnp.asarray(rand_dm(25))
        rho2 = jnp.asarray(rand_dm(25))
        F = fidelity(rho1, rho2)
        assert -tol <= F <= 1 + tol
Example #10
0
 def test_qfunc_is_linear(self, n_xs, n_ys, mix):
     xs = np.linspace(-1, 1, n_xs)
     ys = np.linspace(-1, 1, n_ys)
     qfunc = qutip.QFunc(xs, ys)
     left, right = qutip.rand_dm(5), qutip.rand_dm(5)
     qleft, qright = qfunc(left), qfunc(right)
     qboth = qfunc(mix * left + (1 - mix) * right)
     np.testing.assert_allclose(mix * qleft + (1 - mix) * qright, qboth)
Example #11
0
    def testRandDmSeed(self):
        "random density matrix with seed"

        seed = 12345
        U0 = rand_dm(5, seed=seed)
        U1 = rand_dm(5, seed=None)
        U2 = rand_dm(5, seed=seed)
        assert_(U0 != U1)
        assert_(U0 == U2)
Example #12
0
    def testRandDmSeed(self):
        "random density matrix with seed"

        seed = 12345
        U0 = rand_dm(5, seed=seed)
        U1 = rand_dm(5, seed=None)
        U2 = rand_dm(5, seed=seed)
        assert_(U0 != U1)
        assert_(U0 == U2)
Example #13
0
    def testOperatorVectorTensor(self):
        """
        Superoperator: Operator - vector - operator conversion with a tensor product state.
        """
        Na = 3
        Nb = 2
        rhoa = rand_dm(Na)
        rhob = rand_dm(Nb)
        rho1 = tensor(rhoa, rhob)
        rho2 = vector_to_operator(operator_to_vector(rho1))

        assert_((rho1 - rho2).norm() < 1e-8)
Example #14
0
def test_partial_transpose_randomized():
    """partial transpose: randomized tests on tripartite system"""

    rho = tensor(rand_dm(2, density=1), rand_dm(2, density=1),
                 rand_dm(2, density=1))

    mask = np.random.randint(2, size=3)

    rho_pt_ref = _partial_transpose_reference(rho, mask)

    rho_pt1 = partial_transpose(rho, mask, method="dense")
    np.abs(np.max(rho_pt1.full() - rho_pt_ref.full())) < 1e-12

    rho_pt2 = partial_transpose(rho, mask, method="sparse")
    np.abs(np.max(rho_pt2.full() - rho_pt_ref.full())) < 1e-12
Example #15
0
def test_partial_transpose_comparison():
    """partial transpose: comparing sparse and dense implementations"""

    N = 10
    rho = tensor(rand_dm(N, density=0.5), rand_dm(N, density=0.5))

    # partial transpose of system 1
    rho_pt1 = partial_transpose(rho, [1, 0], method="dense")
    rho_pt2 = partial_transpose(rho, [1, 0], method="sparse")
    np.abs(np.max(rho_pt1.full() - rho_pt1.full())) < 1e-12

    # partial transpose of system 2
    rho_pt1 = partial_transpose(rho, [0, 1], method="dense")
    rho_pt2 = partial_transpose(rho, [0, 1], method="sparse")
    np.abs(np.max(rho_pt1.full() - rho_pt2.full())) < 1e-12
Example #16
0
 def test_qfunc_warns_if_insufficient_memory(self):
     xs = np.linspace(-1, 1, 11)
     state = qutip.rand_dm(4)
     with pytest.warns(UserWarning) as e:
         qutip.qfunc(state, xs, xs, precompute_memory=0)
     assert (e[0].message.args[0].startswith(
         "Falling back to iterative algorithm"))
Example #17
0
def generate_density_matrices_entropy(n_samples, size_hilbert, step_size=0.01):
    """Generate n_samples density matrices with a uniform distribution of entropy
    Input:
        - n_samples (int): number of density matrices to generate
        - size_hilbert (int): dimension of the hilbert space of the density matrices
        - step_size (float): for each entropy p, sample dm with entropy in [p, p+step_size]
    Output:
        - rhos: array of dimension (n_samples, size_hilbert, size_hilbert)
        - entropies: array of dimension (n_samples,)
    """

    print("Generate density matrices...")
    list_entropies = np.arange(0, np.log(size_hilbert), step_size)
    rhos = []
    entropies = []
    for i, s in enumerate(list_entropies):  # for each entropy
        print(s)
        while len(rhos) < (i + 1) * n_samples // len(list_entropies):
            rho = rand_dm(size_hilbert, density=1).data.toarray()
            entropy = entropy_fct(rho)
            if s <= entropy <= s + step_size:
                rhos.append(rho)
                entropies.append(entropy)
    rhos = np.array(rhos)
    entropies = np.array(entropies)

    return rhos, entropies
def test_Transformation8():
    "Check Qobj eigs and direct eig solver reverse transformations match"

    N = 10
    H = rand_herm(N)

    # generate a random basis
    rand = rand_dm(N, density=1)
    
    evals, rand_basis = rand.eigenstates()
    evals2, rand_basis2 = sp_eigs(rand.data, isherm=1)
    
    H1 = H.transform(rand_basis, True)
    H2 = H.transform(rand_basis2, True)
    assert_((H1 - H2).norm() < 1e-6)
    
    ket = rand_ket(N)
    K1 = ket.transform(rand_basis,1)
    K2 = ket.transform(rand_basis2,1)
    assert_((K1 - K2).norm() < 1e-6)
    
    bra = rand_ket(N).dag()
    B1 = bra.transform(rand_basis,1)
    B2 = bra.transform(rand_basis2,1)
    assert_((B1 - B2).norm() < 1e-6)
Example #19
0
 def test_triangle_inequality_4_qubits(self):
     # S(A,B | C,D) <= S(A|C) + S(B|D)
     full = qutip.rand_dm(16, dims=[[2] * 4] * 2, pure=True)
     ac, bd = full.ptrace([0, 2]), full.ptrace([1, 3])
     assert (qutip.entropy_conditional(full, [2, 3]) <=
             (qutip.entropy_conditional(ac, 1) +
              qutip.entropy_conditional(bd, 1)))
Example #20
0
 def test_function_and_class_are_equivalent(self, size, dm, n_xs, n_ys, g):
     xs = np.linspace(-1, 1, n_xs)
     ys = np.linspace(0, 2, n_ys)
     state = qutip.rand_dm(size) if dm else qutip.rand_ket(size)
     function = qutip.qfunc(state, xs, ys, g)
     class_ = qutip.QFunc(xs, ys, g)(state)
     np.testing.assert_allclose(function, class_)
Example #21
0
def test_coo2csr_inplace_sort():
    "Cython structs : COO to CSR inplace (sorted)"
    for k in range(20):
        A = rand_dm(5,0.5).data
        B = A.tocoo()
        C = _test_coo2csr_inplace_struct(B, sorted = 1)
        assert_(not (A!=C).data.any())
Example #22
0
def test_coo2csr_struct():
    "Cython structs : COO to CSR"
    for k in range(20):
        A = rand_dm(5,0.5).data
        B = A.tocoo()
        C = _test_coo2csr_struct(B)
        assert_(not (A!=C).data.any())
Example #23
0
def test_csr2coo():
    "Cython structs : CSR to COO"
    for k in range(20):
        A = rand_dm(5,0.5).data
        B = A.tocoo()
        C = _test_csr2coo_struct(A)
        assert_(not (B!=C).data.any())
Example #24
0
def test_vector_roundtrip():
    "BR Tools : vector roundtrip transform"
    dimension = 10
    for _ in range(50):
        H = qutip.rand_herm(dimension, 0.5).full('F')
        vector = qutip.mat2vec(qutip.rand_dm(dimension, 0.5).full()).ravel()
        assert np.allclose(vector, _test_vector_roundtrip(H, vector))
Example #25
0
def test_Transformation8():
    "Check Qobj eigs and direct eig solver reverse transformations match"

    N = 10
    H = rand_herm(N)

    # generate a random basis
    rand = rand_dm(N, density=1)

    evals, rand_basis = rand.eigenstates()
    evals2, rand_basis2 = sp_eigs(rand.data, isherm=1)

    H1 = H.transform(rand_basis, True)
    H2 = H.transform(rand_basis2, True)
    assert_((H1 - H2).norm() < 1e-6)

    ket = rand_ket(N)
    K1 = ket.transform(rand_basis, 1)
    K2 = ket.transform(rand_basis2, 1)
    assert_((K1 - K2).norm() < 1e-6)

    bra = rand_ket(N).dag()
    B1 = bra.transform(rand_basis, 1)
    B2 = bra.transform(rand_basis2, 1)
    assert_((B1 - B2).norm() < 1e-6)
Example #26
0
 def test_iterate_and_precompute_are_equivalent(self, size, n_xs, n_ys, g):
     xs = np.linspace(-1, 1, n_xs)
     ys = np.linspace(0, 2, n_ys)
     state = qutip.rand_dm(size)
     iterate = qutip.qfunc(state, xs, ys, g, precompute_memory=None)
     precompute = qutip.qfunc(state, xs, ys, g, precompute_memory=np.inf)
     np.testing.assert_allclose(iterate, precompute)
Example #27
0
def test_EntropyMutual():
    "Mutual information"
    # verify mutual information = S(A)+S(B) for pure state
    rhos = [rand_dm(25, dims=[[5, 5], [5, 5]], pure=True) for k in range(10)]

    for r in rhos:
        assert_equal(abs(entropy_mutual(r, [0], [1]) - (
            entropy_vn(ptrace(r, 0)) + entropy_vn(ptrace(r, 1)))) < 1e-13,
            True)

    # check component selection
    rhos = [rand_dm(8, dims=[[2, 2, 2], [2, 2, 2]], pure=True)
            for k in range(10)]

    for r in rhos:
        assert_equal(abs(entropy_mutual(r, [0, 2], [1]) - (entropy_vn(
            ptrace(r, [0, 2])) + entropy_vn(ptrace(r, 1)))) < 1e-13, True)
Example #28
0
def test_ket_and_dm_transformations_equivalent(n_levels):
    """Consistency between transformations of kets and density matrices."""
    psi0 = qutip.rand_ket(n_levels)
    # Generate a random basis
    _, rand_basis = qutip.rand_dm(n_levels, density=1).eigenstates()
    rho1 = qutip.ket2dm(psi0).transform(rand_basis, True)
    rho2 = qutip.ket2dm(psi0.transform(rand_basis, True))
    assert (rho1 - rho2).norm() < 1e-6
    def testOperatorVector(self):
        """
        Superoperator: Operator - vector - operator conversion.
        """
        N = 3
        rho1 = rand_dm(N)
        rho2 = vector_to_operator(operator_to_vector(rho1))

        assert_((rho1 - rho2).norm() < 1e-8)
Example #30
0
    def testOperatorVector(self):
        """
        Superoperator: Operator - vector - operator conversion.
        """
        N = 3
        rho1 = rand_dm(N)
        rho2 = vector_to_operator(operator_to_vector(rho1))

        assert_((rho1 - rho2).norm() < 1e-8)
Example #31
0
def test_graph_bfs():
    "Graph: Breadth-First Search"
    A = rand_dm(25, 0.5)
    A = A.data
    A.data = np.real(A.data)
    seed = np.random.randint(24)
    arr1 = BFO(A, seed)[0]
    arr2 = breadth_first_search(A, seed)[0]
    assert_equal((arr1 - arr2).all(), 0)
Example #32
0
def test_graph_bfs():
    "Graph: Breadth-First Search"
    A = rand_dm(25, 0.5)
    A = A.data
    A.data = np.real(A.data)
    seed = np.random.randint(24)
    arr1 = BFO(A, seed)[0]
    arr2 = breadth_first_search(A, seed)[0]
    assert_equal((arr1 - arr2).all(), 0)
Example #33
0
def test_EntropyLinear():
    "Linear entropy"
    # test_ entropy_vn = 0 for pure state
    psi = rand_ket(10)
    assert_equal(abs(entropy_linear(psi)) <= 1e-13, True)

    # test_ linear entropy always less than or equal to VN entropy
    rhos = [rand_dm(6) for k in range(10)]
    for k in rhos:
        assert_equal(entropy_linear(k) <= entropy_vn(k), True)
Example #34
0
    def testRanddm(self):
        "random density matrix"

        R = [rand_dm(5) for k in range(5)]
        for r in R:
            assert_(r.tr() - 1.0 < 1e-15)
            # verify all eigvals are >=0
            assert_(not any(sp_eigs(r.data, r.isherm, vecs=False)) < 0)
            # verify hermitian
            assert_(r.isherm)
Example #35
0
def test_diag_liou_mult(dimension):
    "BR Tools : Diagonal Liouvillian mult"
    H = qutip.rand_dm(dimension, 0.5)
    evals, evecs = H.eigenstates()
    L = qutip.liouvillian(H.transform(evecs))
    coefficients = np.ones((dimension * dimension, ), dtype=np.complex128)
    calculated = np.zeros_like(coefficients)
    target = L.data.dot(coefficients)
    _test_diag_liou_mult(evals, coefficients, calculated, dimension)
    np.testing.assert_allclose(target, calculated, atol=1e-11, rtol=1e-6)
Example #36
0
def test_EntropyLinear():
    "Entropy: Linear entropy"
    # test_ entropy_vn = 0 for pure state
    psi = rand_ket(10)
    assert_equal(abs(entropy_linear(psi)) <= 1e-13, True)

    # test_ linear entropy always less than or equal to VN entropy
    rhos = [rand_dm(6) for k in range(10)]
    for k in rhos:
        assert_equal(entropy_linear(k) <= entropy_vn(k), True)
Example #37
0
 def testMultiLevelSystem(self):
     """
     Test for processor with multi-level system
     """
     N = 2
     proc = Processor(N=N, dims=[2, 3])
     proc.add_control(tensor(sigmaz(), rand_dm(3, density=1.)), label="sz0")
     proc.set_all_coeffs({"sz0": np.array([1, 2])})
     proc.set_all_tlist(np.array([0., 1., 2]))
     proc.run_state(init_state=tensor([basis(2, 0), basis(3, 1)]))
Example #38
0
def test_isbra():
    """Tests the `isbra` method to see whether a state is a bra based on its shape"""
    for i in range(2, 6):
        assert isbra(rand_ket(i).full()) == False  # tests kets

    for j in range(2, 6):
        assert isbra(dag(rand_ket(j).full())) == True  # tests bras

    for k in range(2, 6):
        assert isbra(rand_dm(k).full()) == False  # tests density matrices
Example #39
0
    def testRanddm(self):
        "random density matrix"

        R = [rand_dm(5) for k in range(5)]
        for r in R:
            assert_(r.tr() - 1.0 < 1e-15)
            # verify all eigvals are >=0
            assert_(not any(sp_eigs(r.data, r.isherm, vecs=False)) < 0)
            # verify hermitian
            assert_(r.isherm)
Example #40
0
    def testLiouvillianImplem(self):
        """
        Superoperator: Randomized comparison of standard and reference
        Liouvillian functions.
        """
        N1 = 3
        N2 = 4
        N3 = 5

        a1 = tensor(rand_dm(N1, density=0.75), identity(N2), identity(N3))
        a2 = tensor(identity(N1), rand_dm(N2, density=0.75), identity(N3))
        a3 = tensor(identity(N1), identity(N2), rand_dm(N3, density=0.75))
        H = a1.dag() * a1 + a2.dag() * a2 + a3.dag() * a3

        c_ops = [np.sqrt(0.01) * a1, np.sqrt(0.025) * a2, np.sqrt(0.05) * a3]

        L1 = liouvillian(H, c_ops)
        L2 = liouvillian_ref(H, c_ops)

        assert_((L1 - L2).norm('max') < 1e-8)
Example #41
0
def test_EntropyConditional():
    "Conditional entropy"
    # test_ S(A,B|C,D)<=S(A|C)+S(B|D)
    rhos = [rand_dm(16, dims=[[2, 2, 2, 2], [2, 2, 2, 2]], pure=True)
            for k in range(20)]

    for ABCD in rhos:
        AC = ptrace(ABCD, [0, 2])
        BD = ptrace(ABCD, [1, 3])
        assert_equal(entropy_conditional(ABCD, [2, 3]) <= (
            entropy_conditional(AC, 1) + entropy_conditional(BD, 1)), True)

    # test_ S(A|B,C)<=S(A|B)
    rhos = [rand_dm(8, dims=[[2, 2, 2], [2, 2, 2]], pure=True)
            for k in range(20)]

    for ABC in rhos:
        AB = ptrace(ABC, [0, 1])
        assert_equal(entropy_conditional(
            ABC, [1, 2]) <= entropy_conditional(AB, 1), True)
Example #42
0
def test_EntropyConcurrence():
    "Concurrence"
    # check concurrence = 1 for maximal entangled (Bell) state
    bell = ket2dm(
        (tensor(basis(2), basis(2)) + tensor(basis(2, 1), basis(2, 1))).unit())
    assert_equal(abs(concurrence(bell) - 1.0) < 1e-15, True)

    # check all concurrence values >=0
    rhos = [rand_dm(4, dims=[[2, 2], [2, 2]]) for k in range(10)]
    for k in rhos:
        assert_equal(concurrence(k) >= 0, True)
Example #43
0
    def testOperatorUnitaryTransform(self):
        """
        Superoperator: Unitary transformation with operators and superoperators
        """
        N = 3
        rho = rand_dm(N)
        U = rand_unitary(N)

        rho1 = U * rho * U.dag()
        rho2_vec = spre(U) * spost(U.dag()) * operator_to_vector(rho)
        rho2 = vector_to_operator(rho2_vec)

        assert_((rho1 - rho2).norm() < 1e-8)
Example #44
0
 def testRanddmEigs(self):
     "Random: Density matrix - Eigs given"
     R = []
     for k in range(5):
         eigs = np.random.random(5)
         eigs /= np.sum(eigs)
         R += [rand_dm(eigs)]
     for r in R:
         assert_(r.tr() - 1.0 < 1e-15)
         # verify all eigvals are >=0
         assert_(not any(sp_eigs(r.data, r.isherm, vecs=False)) < 0)
         # verify hermitian
         assert_(r.isherm)
Example #45
0
    def testOperatorSpreAppl(self):
        """
        Superoperator: apply operator and superoperator from left (spre)
        """
        N = 3
        rho = rand_dm(N)
        U = rand_unitary(N)

        rho1 = U * rho
        rho2_vec = spre(U) * operator_to_vector(rho)
        rho2 = vector_to_operator(rho2_vec)

        assert_((rho1 - rho2).norm() < 1e-8)
def test_Transformation5():
    "Consistency between transformations of kets and density matrices"

    N = 4
    psi0 = rand_ket(N)

    # generate a random basis
    evals, rand_basis = rand_dm(N, density=1).eigenstates()

    rho1 = ket2dm(psi0).transform(rand_basis, True)
    rho2 = ket2dm(psi0.transform(rand_basis, True))

    assert_((rho1 - rho2).norm() < 1e-6)
Example #47
0
    def testOperatorSpostAppl(self):
        """
        Superoperator: apply operator and superoperator from right (spost)
        """
        N = 3
        rho = rand_dm(N)
        U = rand_unitary(N)

        rho1 = rho * U
        rho2_vec = spost(U) * operator_to_vector(rho)
        rho2 = vector_to_operator(rho2_vec)

        assert_((rho1 - rho2).norm() < 1e-8)
Example #48
0
def test_graph_degree():
    "Graph: Graph Degree"
    A = rand_dm(25, 0.1)
    deg = graph_degree(A.data)
    A = A.full()
    np_deg = []
    for k in range(25):
        num = 0
        inds = A[k, :].nonzero()[0]
        num = len(inds)
        if k in inds:
            num += 1
        np_deg.append(num)
    np.asarray(np_deg, dtype=int)
    assert_equal((deg - np_deg).all(), 0)