Example #1
0
def test_scheduling_pulse(instructions, method, expected_length,
                          random_shuffle, gates_schedule):
    circuit = QubitCircuit(4)
    for instruction in instructions:
        circuit.add_gate(
            Gate(instruction.name, instruction.targets, instruction.controls))

    if random_shuffle:
        repeat_num = 5
    else:
        repeat_num = 0
    result0 = gate_sequence_product(circuit.propagators())

    # run the scheduler
    scheduler = Scheduler(method)
    gate_cycle_indices = scheduler.schedule(instructions,
                                            gates_schedule=gates_schedule,
                                            repeat_num=repeat_num)

    # check if the scheduled length is expected
    assert (max(gate_cycle_indices) == expected_length)
    scheduled_gate = [[] for i in range(max(gate_cycle_indices) + 1)]

    # check if the scheduled circuit is correct
    for i, cycles in enumerate(gate_cycle_indices):
        scheduled_gate[cycles].append(circuit.gates[i])
    circuit.gates = sum(scheduled_gate, [])
    result1 = gate_sequence_product(circuit.propagators())
    assert (tracedist(result0 * result1.dag(), qeye(result0.dims[0])) < 1.0e-7)
Example #2
0
    def test_globalphase_gate_propagators(self):
        qc = QubitCircuit(2)
        qc.add_gate("GLOBALPHASE", arg_value=np.pi / 2)

        [gate] = qc.gates
        assert gate.name == "GLOBALPHASE"
        assert gate.arg_value == np.pi / 2

        [U_expanded] = qc.propagators()
        assert U_expanded == 1j * qp.qeye([2, 2])

        [U_unexpanded] = qc.propagators(expand=False)
        assert U_unexpanded == 1j * qp.qeye([2, 2])
Example #3
0
def test_numerical_evolution(num_qubits, gates, device_class, kwargs):
    num_qubits = 2
    circuit = QubitCircuit(num_qubits)
    for gate in gates:
        circuit.add_gate(gate)
    device = device_class(num_qubits, **kwargs)
    device.load_circuit(circuit)

    state = qutip.rand_ket(2**num_qubits)
    state.dims = [[2] * num_qubits, [1] * num_qubits]
    target = gate_sequence_product([state] + circuit.propagators())
    if isinstance(device, DispersiveCavityQED):
        num_ancilla = len(device.dims) - num_qubits
        ancilla_indices = slice(0, num_ancilla)
        extra = qutip.basis(device.dims[ancilla_indices], [0] * num_ancilla)
        init_state = qutip.tensor(extra, state)
    elif isinstance(device, SCQubits):
        # expand to 3-level represetnation
        init_state = _ket_expaned_dims(state, device.dims)
    else:
        init_state = state
    options = qutip.Options(store_final_state=True, nsteps=50_000)
    result = device.run_state(init_state=init_state,
                              analytical=False,
                              options=options)
    numerical_result = result.final_state
    if isinstance(device, DispersiveCavityQED):
        target = qutip.tensor(extra, target)
    elif isinstance(device, SCQubits):
        target = _ket_expaned_dims(target, device.dims)
    assert _tol > abs(1 - qutip.metrics.fidelity(numerical_result, target))
Example #4
0
def test_export_import():
    qc = QubitCircuit(3)
    qc.add_gate("CRY", targets=1, controls=0, arg_value=np.pi)
    qc.add_gate("CRX", targets=1, controls=0, arg_value=np.pi)
    qc.add_gate("CRZ", targets=1, controls=0, arg_value=np.pi)
    qc.add_gate("CNOT", targets=1, controls=0)
    qc.add_gate("TOFFOLI", targets=2, controls=[0, 1])
    # qc.add_gate("SQRTNOT", targets=0)
    qc.add_gate("CS", targets=1, controls=0)
    qc.add_gate("CT", targets=1, controls=0)
    qc.add_gate("SWAP", targets=[0, 1])
    qc.add_gate("QASMU", targets=[0], arg_value=[np.pi, np.pi, np.pi])
    qc.add_gate("RX", targets=[0], arg_value=np.pi)
    qc.add_gate("RY", targets=[0], arg_value=np.pi)
    qc.add_gate("RZ", targets=[0], arg_value=np.pi)
    qc.add_gate("SNOT", targets=[0])
    qc.add_gate("X", targets=[0])
    qc.add_gate("Y", targets=[0])
    qc.add_gate("Z", targets=[0])
    qc.add_gate("S", targets=[0])
    qc.add_gate("T", targets=[0])
    # qc.add_gate("CSIGN", targets=[0], controls=[1])

    read_qc = read_qasm(circuit_to_qasm_str(qc), strmode=True)

    props = qc.propagators()
    read_props = read_qc.propagators()

    for u0, u1 in zip(props, read_props):
        assert (u0 - u1).norm() < 1e-12
Example #5
0
    def test_multi_gates(self):
        N = 2
        H_d = tensor([sigmaz()]*2)
        H_c = []

        test = OptPulseProcessor(N)
        test.add_drift(H_d, [0, 1])
        test.add_control(sigmax(), cyclic_permutation=True)
        test.add_control(sigmay(), cyclic_permutation=True)
        test.add_control(tensor([sigmay(), sigmay()]))

        # qubits circuit with 3 gates
        setting_args = {"SNOT": {"num_tslots": 10, "evo_time": 1},
                        "SWAP": {"num_tslots": 30, "evo_time": 3},
                        "CNOT": {"num_tslots": 30, "evo_time": 3}}
        qc = QubitCircuit(N)
        qc.add_gate("SNOT", 0)
        qc.add_gate("SWAP", targets=[0, 1])
        qc.add_gate('CNOT', controls=1, targets=[0])
        test.load_circuit(qc, setting_args=setting_args,
                          merge_gates=False)

        rho0 = rand_ket(4)  # use random generated ket state
        rho0.dims = [[2, 2], [1, 1]]
        U = gate_sequence_product(qc.propagators())
        rho1 = U * rho0
        result = test.run_state(rho0)
        assert_(fidelity(result.states[-1], rho1) > 1-1.0e-6)
Example #6
0
    def test_user_gate(self):
        """
        User defined gate for QubitCircuit
        """
        def customer_gate1(arg_values):
            mat = np.zeros((4, 4), dtype=np.complex128)
            mat[0, 0] = mat[1, 1] = 1.
            mat[2:4, 2:4] = gates.rx(arg_values).full()
            return Qobj(mat, dims=[[2, 2], [2, 2]])

        def customer_gate2():
            mat = np.array([[1., 0],
                            [0., 1.j]])
            return Qobj(mat, dims=[[2], [2]])

        qc = QubitCircuit(3)
        qc.user_gates = {"CTRLRX": customer_gate1,
                         "T1": customer_gate2}
        qc.add_gate("CTRLRX", targets=[1, 2], arg_value=np.pi/2)
        qc.add_gate("T1", targets=[1])
        props = qc.propagators()
        result1 = tensor(identity(2), customer_gate1(np.pi/2))
        np.testing.assert_allclose(props[0].full(), result1.full())
        result2 = tensor(identity(2), customer_gate2(), identity(2))
        np.testing.assert_allclose(props[1].full(), result2.full())
Example #7
0
    def test_N_level_system(self):
        """
        Test for circuit with N-level system.
        """
        mat3 = qp.rand_unitary_haar(3)

        def controlled_mat3(arg_value):
            """
            A qubit control an operator acting on a 3 level system
            """
            control_value = arg_value
            dim = mat3.dims[0][0]
            return (tensor(fock_dm(2, control_value), mat3) +
                    tensor(fock_dm(2, 1 - control_value), identity(dim)))

        qc = QubitCircuit(2, dims=[3, 2])
        qc.user_gates = {"CTRLMAT3": controlled_mat3}
        qc.add_gate("CTRLMAT3", targets=[1, 0], arg_value=1)
        props = qc.propagators()
        final_fid = qp.average_gate_fidelity(mat3, ptrace(props[0], 0) - 1)
        assert pytest.approx(final_fid, 1.0e-6) == 1

        init_state = basis([3, 2], [0, 1])
        result = qc.run(init_state)
        final_fid = qp.fidelity(result, props[0] * init_state)
        assert pytest.approx(final_fid, 1.0e-6) == 1.
Example #8
0
 def testresolve(self, gate_from, gate_to, targets, controls):
     qc1 = QubitCircuit(2)
     qc1.add_gate(gate_from, targets=targets, controls=controls)
     U1 = gates.gate_sequence_product(qc1.propagators())
     qc2 = qc1.resolve_gates(basis=gate_to)
     U2 = gates.gate_sequence_product(qc2.propagators())
     assert _op_dist(U1, U2) < 1e-12
Example #9
0
def test_numerical_evolution(num_qubits, gates, device_class, kwargs):
    num_qubits = 3
    circuit = QubitCircuit(num_qubits)
    for gate in gates:
        circuit.add_gate(gate)
    device = device_class(num_qubits, **kwargs)
    device.load_circuit(circuit)

    state = qutip.rand_ket(2**num_qubits)
    state.dims = [[2] * num_qubits, [1] * num_qubits]
    target = gate_sequence_product([state] + circuit.propagators())
    if len(device.dims) > num_qubits:
        num_ancilla = len(device.dims) - num_qubits
        ancilla_indices = slice(0, num_ancilla)
        extra = qutip.basis(device.dims[ancilla_indices], [0] * num_ancilla)
        init_state = qutip.tensor(extra, state)
    else:
        init_state = state
    options = qutip.Options(store_final_state=True, nsteps=50_000)
    result = device.run_state(init_state=init_state,
                              analytical=False,
                              options=options)
    if len(device.dims) > num_qubits:
        target = qutip.tensor(extra, target)
    assert _tol > abs(1 - qutip.metrics.fidelity(result.final_state, target))
Example #10
0
def test_device_against_gate_sequence(num_qubits, gates, device_class, kwargs):
    circuit = QubitCircuit(num_qubits)
    for gate in gates:
        circuit.add_gate(gate)
    U_ideal = gate_sequence_product(circuit.propagators())

    device = device_class(num_qubits)
    U_physical = gate_sequence_product(device.run(circuit))
    assert (U_ideal - U_physical).norm() < _tol
Example #11
0
def test_analytical_evolution(num_qubits, gates, device_class, kwargs):
    circuit = QubitCircuit(num_qubits)
    for gate in gates:
        circuit.add_gate(gate)
    state = qutip.rand_ket(2**num_qubits)
    state.dims = [[2] * num_qubits, [1] * num_qubits]
    ideal = gate_sequence_product([state] + circuit.propagators())
    device = device_class(num_qubits)
    operators = device.run_state(init_state=state, qc=circuit, analytical=True)
    result = gate_sequence_product(operators)
    assert abs(qutip.metrics.fidelity(result, ideal) - 1) < _tol
Example #12
0
 def testFREDKINdecompose(self):
     """
     FREDKIN to rotation and CNOT: compare unitary matrix for FREDKIN and product of
     resolved matrices in terms of rotation gates and CNOT.
     """
     qc1 = QubitCircuit(3)
     qc1.add_gate("FREDKIN", targets=[0, 1], controls=[2])
     U1 = gates.gate_sequence_product(qc1.propagators())
     qc2 = qc1.resolve_gates()
     U2 = gates.gate_sequence_product(qc2.propagators())
     assert _op_dist(U1, U2) < 1e-12
Example #13
0
 def testSNOTdecompose(self):
     """
     SNOT to rotation: compare unitary matrix for SNOT and product of
     resolved matrices in terms of rotation gates.
     """
     qc1 = QubitCircuit(1)
     qc1.add_gate("SNOT", targets=0)
     U1 = gates.gate_sequence_product(qc1.propagators())
     qc2 = qc1.resolve_gates()
     U2 = gates.gate_sequence_product(qc2.propagators())
     assert _op_dist(U1, U2) < 1e-12
Example #14
0
 def testadjacentgates(self):
     """
     Adjacent Gates: compare unitary matrix for ISWAP and product of
     resolved matrices in terms of adjacent gates interaction.
     """
     qc1 = QubitCircuit(3)
     qc1.add_gate("ISWAP", targets=[0, 2])
     U1 = gates.gate_sequence_product(qc1.propagators())
     qc0 = qc1.adjacent_gates()
     qc2 = qc0.resolve_gates(basis="ISWAP")
     U2 = gates.gate_sequence_product(qc2.propagators())
     assert _op_dist(U1, U2) < 1e-12
Example #15
0
def test_allow_permutation():
    circuit = QubitCircuit(2)
    circuit.add_gate("X", 0)
    circuit.add_gate("CNOT", 0, 1)
    circuit.add_gate("X", 1)
    result0 = gate_sequence_product(circuit.propagators())

    scheduler = Scheduler("ASAP", allow_permutation=True)
    gate_cycle_indices = scheduler.schedule(circuit)
    assert (max(gate_cycle_indices) + 1) == 2

    scheduler = Scheduler("ASAP", allow_permutation=False)
    gate_cycle_indices = scheduler.schedule(circuit)
    assert (max(gate_cycle_indices) + 1) == 3
Example #16
0
def test_scheduling_pulse(instructions, method, expected_length,
                          random_shuffle, gates_schedule):
    circuit = QubitCircuit(4)
    for instruction in instructions:
        circuit.add_gate(
            Gate(instruction.name, instruction.targets, instruction.controls))

    if random_shuffle:
        repeat_num = 5
    else:
        repeat_num = 0
    result0 = gate_sequence_product(circuit.propagators())

    # run the scheduler
    scheduler = Scheduler(method)
    gate_cycle_indices = scheduler.schedule(instructions,
                                            gates_schedule=gates_schedule,
                                            repeat_num=repeat_num)
    assert max(gate_cycle_indices) == expected_length
Example #17
0
    def test_N_level_system(self):
        """
        Test for circuit with N-level system.
        """
        mat3 = rand_dm(3, density=1.)

        def controlled_mat3(arg_value):
            """
            A qubit control an operator acting on a 3 level system
            """
            control_value = arg_value
            dim = mat3.dims[0][0]
            return (tensor(fock_dm(2, control_value), mat3) +
                    tensor(fock_dm(2, 1 - control_value), identity(dim)))

        qc = QubitCircuit(2, dims=[3, 2])
        qc.user_gates = {"CTRLMAT3": controlled_mat3}
        qc.add_gate("CTRLMAT3", targets=[1, 0], arg_value=1)
        props = qc.propagators()
        np.testing.assert_allclose(mat3, ptrace(props[0], 0) - 1)
Example #18
0
 def test_add_gates(self, valid_input, correct_result):
     circuit = QubitCircuit(1)
     circuit.add_gates(valid_input)
     result = gate_sequence_product(circuit.propagators())
     assert(result == correct_result)