def __init__( self, energy_levels, isotope, levelsfmt, # ='cdsd-pc', use_cached=True, use_json=None, verbose=True, ): # %% Init # Initialize PartitionFunctionCalculator for this electronic state ElecState = ElectronicState("CO2", isotope, "X", "1Σu+") super(PartFuncCO2_CDSDcalc, self).__init__(ElecState) # Check inputs ('return' is not mentionned in signature. it will just return # after cache name is given) assert use_cached in [True, False, "regen", "force", "return"] if isotope not in [1, 2]: raise ValueError( "CDSD Energies not defined for isotope: {0}".format(isotope)) if use_json is not None: warn( DeprecationWarning( "use_json replaced with faster HDF5-based use_cached")) # Get vibrational level definitions that match Energy Database (in particular # how Evib and Erot are calculated) # This is needed to be able to match the levels in the Line Database and # the levels in the Energy database if levelsfmt == "cdsd-p": viblvl_label = "p" elif levelsfmt == "cdsd-pc": viblvl_label = "pc" elif levelsfmt == "cdsd-pcN": viblvl_label = "pcN" elif levelsfmt == "cdsd-hamil": viblvl_label = "pcJN" elif levelsfmt is None: # dont label the levels. Wont be able to use the EnergyDatabase to fetch # vibrational energies for lines, however it can still be used to # calculate Partition functions independently from a Spectrum calculation viblvl_label = None else: raise ValueError( "Unknown Energy database format: levelsfmt = `{0}`".format( levelsfmt) + ". Use one of: `cdsd-p`, `cdsd-pc`, `cdsd-pcN`,`cdsd-hamil`") # Store defaults self.verbose = verbose self.use_cached = use_cached self.levelsfmt = levelsfmt self.viblvl_label = viblvl_label self.last_modification = time.ctime( getmtime(getTestFile(r"co2_cdsd_hamiltonian_fragment.levels"))) if verbose >= 2: print("Last modification time: {0}".format(self.last_modification)) # Get variables to store in metadata (after default values have been set) molecule = "CO2" # will be stored in cache file metadata last_modification = time.ctime( getmtime(getTestFile(r"co2_cdsd_hamiltonian_fragment.levels"))) _discard = [ "self", "energy_levels", "verbose", "ElecState", "electronic_state", "use_json", "use_cached", ] # (dev) locals() automatically stores all variables: levelsfmt, viblvl_label, etc. metadata = filter_metadata(locals(), discard_variables=_discard) # %% Get levels # Function of use_cached value: # ... if True, use (and generate if doesnt exist) cache file. # ... if 'regen', regenerate cache file. If 'force', raise an error # ... if file doesnt exist. # If file is deprecated, regenerate it unless 'force' was used # Load cache file if exists cachefile = energy_levels + ".h5" self.cachefile = cachefile # If return, return after cachefile generated (used for tests) if use_cached == "return": return df = load_h5_cache_file( cachefile, use_cached, valid_if_metadata_is=metadata, relevant_if_metadata_above={}, relevant_if_metadata_below={}, current_version=radis.__version__, last_compatible_version=OLDEST_COMPATIBLE_VERSION, verbose=verbose, ) if df is None: # Read normal file df = pd.read_csv(energy_levels, comment="#", delim_whitespace=True) df = self._add_degeneracies(df) df = self._add_levels(df) self.df = df # Store if use_cached and not exists(cachefile): save_to_hdf( self.df, cachefile, metadata=metadata, version=radis.__version__, key="df", overwrite=True, verbose=verbose, )
def fetch_astroquery( molecule, isotope, wmin, wmax, verbose=True, cache=True, expected_metadata={} ): """Download a HITRAN line database to a Pandas DataFrame. Wrapper to Astroquery [1]_ fetch function Parameters ---------- molecule: str, or int molecule name or identifier isotope: int isotope number wmin, wmax: float (cm-1) wavenumber min and max Other Parameters ---------------- verbose: boolean Default ``True`` cache: boolean or ``'regen'`` if ``True``, tries to find a ``.h5`` cache file in the Astroquery :py:attr:`~astroquery.query.BaseQuery.cache_location`, that would match the requirements. If not found, downloads it and saves the line dataframe as a ``.h5`` file in the Astroquery. If ``'regen'``, delete existing cache file to regerenate it. expected_metadata: dict if ``cache=True``, check that the metadata in the cache file correspond to these attributes. Arguments ``molecule``, ``isotope``, ``wmin``, ``wmax`` are already added by default. Notes ----- The HITRAN module in Astroquery [1]_ is itself based on [HAPI]_ References ---------- .. [1] `Astroquery <https://astroquery.readthedocs.io>`_ See Also -------- :py:func:`astroquery.hitran.reader.download_hitran`, :py:func:`astroquery.hitran.reader.read_hitran_file`, :py:attr:`~astroquery.query.BaseQuery.cache_location` """ # Check input if not is_float(molecule): mol_id = get_molecule_identifier(molecule) else: mol_id = molecule molecule = get_molecule(mol_id) assert is_float(isotope) empty_range = False if cache: # Cache file location in Astroquery cache # TODO: move full HITRAN databases in ~/radisdb cache like io/hitemp/fetch_hitemp ? fcache = join( Hitran.cache_location, CACHE_FILE_NAME.format( **{"molecule": molecule, "isotope": isotope, "wmin": wmin, "wmax": wmax} ), ) # ... Update metadata with physical properties from the database. expected_metadata.update( {"molecule": molecule, "isotope": isotope, "wmin": wmin, "wmax": wmax} ) if cache == "regen": if exists(fcache): if verbose: print(f"Cache file {fcache} deleted to be regenerated") os.remove(fcache) else: # Load cache file if valid check_cache_file( fcache=fcache, use_cached=cache, expected_metadata=expected_metadata, verbose=verbose, ) if exists(fcache): try: return get_cache_file(fcache, verbose=verbose) except Exception as err: if verbose: printr( "Problem reading cache file {0}:\n{1}\nDeleting it!".format( fcache, str(err) ) ) os.remove(fcache) # Download using the astroquery library try: response = Hitran.query_lines_async( molecule_number=mol_id, isotopologue_number=isotope, min_frequency=wmin / u.cm, max_frequency=wmax / u.cm, ) except KeyError as err: raise KeyError( str(err) + " <<w this error occured in Astroquery. Maybe these molecule " + "({0}) and isotope ({1}) are not supported".format(molecule, isotope) ) from err # Deal with usual errors if response.status_code == 404: # Maybe there are just no lines for this species in this range # In that case we usually end up with errors like: # (<class 'Exception'>, Exception('Query failed: 404 Client Error: # Not Found for url: http://hitran.org/lbl/api?numax=25000&numin=19000&iso_ids_list=69\n',), # <traceback object at 0x7f0967c91708>) if response.reason == "Not Found": # Let's bet it's just that there are no lines in this range empty_range = True if verbose: print( ( "No lines for {0} (id={1}), iso={2} in range {3:.2f}-{4:.2f}cm-1. ".format( molecule, mol_id, isotope, wmin, wmax ) ) ) else: raise ValueError( "An error occured during the download of HITRAN files " + "for {0} (id={1}), iso={2} between {3:.2f}-{4:.2f}cm-1. ".format( molecule, mol_id, isotope, wmin, wmax ) + "Are you online?\n" + "See details of the error below:\n\n {0}".format(response.reason) ) elif response.status_code == 500: raise ValueError( "{0} while querying the HITRAN server: ".format(response.status_code) + "\n\n{0}".format(response.text) ) # Process response # Rename columns from Astroquery to RADIS format rename_columns = { "molec_id": "id", "local_iso_id": "iso", "nu": "wav", "sw": "int", "a": "A", "gamma_air": "airbrd", "gamma_self": "selbrd", "elower": "El", "n_air": "Tdpair", "delta_air": "Pshft", "global_upper_quanta": "globu", "global_lower_quanta": "globl", "local_upper_quanta": "locu", "local_lower_quanta": "locl", "line_mixing_flag": "lmix", "gp": "gp", "gpp": "gpp", } if not empty_range: tbl = Hitran._parse_result(response) df = tbl.to_pandas() df = df.rename(columns=rename_columns) else: df = pd.DataFrame(columns=list(rename_columns.values())) # Cast type to float64 cast_type = { "wav": np.float64, "int": np.float64, "A": np.float64, "airbrd": np.float64, "selbrd": np.float64, "El": np.float64, "Tdpair": np.float64, "Pshft": np.float64, } for c, typ in cast_type.items(): df[c] = df[c].astype(typ) # cached file mode but cached file doesn't exist yet (else we had returned) if cache: new_metadata = { "molecule": molecule, "isotope": isotope, "wmin": wmin, "wmax": wmax, } if verbose: print( "Generating cache file {0} with metadata :\n{1}".format( fcache, new_metadata ) ) try: save_to_hdf( df, fcache, metadata=new_metadata, version=radis.__version__, key="df", overwrite=True, verbose=verbose, ) except PermissionError: if verbose: print(sys.exc_info()) print("An error occured in cache file generation. Lookup access rights") pass return df
def hit2df( fname, cache=True, verbose=True, drop_non_numeric=True, load_wavenum_min=None, load_wavenum_max=None, ): """Convert a HITRAN/HITEMP [1]_ file to a Pandas dataframe Parameters ---------- fname: str HITRAN-HITEMP file name cache: boolean, or ``'regen'`` or ``'force'`` if ``True``, a pandas-readable HDF5 file is generated on first access, and later used. This saves on the datatype cast and conversion and improves performances a lot (but changes in the database are not taken into account). If False, no database is used. If ``'regen'``, temp file are reconstructed. Default ``True``. Other Parameters ---------------- drop_non_numeric: boolean if ``True``, non numeric columns are dropped. This improves performances, but make sure all the columns you need are converted to numeric formats before hand. Default ``True``. Note that if a cache file is loaded it will be left untouched. load_wavenum_min, load_wavenum_max: float if not ``'None'``, only load the cached file if it contains data for wavenumbers above/below the specified value. See :py:func`~radis.io.cache_files.load_h5_cache_file`. Default ``'None'``. Returns ------- df: pandas Dataframe dataframe containing all lines and parameters References ---------- .. [1] `HITRAN 1996, Rothman et al., 1998 <https://www.sciencedirect.com/science/article/pii/S0022407398000788>`__ Notes ----- Performances: see CDSD-HITEMP parser See Also -------- :func:`~radis.io.cdsd.cdsd2df` """ metadata = {} # Last modification time of the original file : metadata["last_modification"] = time.ctime(getmtime(fname)) if verbose >= 2: print("Opening file {0} (cache={1})".format(fname, cache)) print("Last modification time: {0}".format(metadata["last_modification"])) if load_wavenum_min and load_wavenum_max: assert load_wavenum_min < load_wavenum_max columns = columns_2004 # Use cache file if possible fcache = cache_file_name(fname) if cache and exists(fcache): relevant_if_metadata_above = ( {"wavenum_max": load_wavenum_min} if load_wavenum_min else {} ) # not relevant if wavenum_max of file is < wavenum min required relevant_if_metadata_below = ( {"wavenum_min": load_wavenum_max} if load_wavenum_max else {} ) # not relevant if wavenum_min of file is > wavenum max required df = load_h5_cache_file( fcache, cache, valid_if_metadata_is=metadata, relevant_if_metadata_above=relevant_if_metadata_above, relevant_if_metadata_below=relevant_if_metadata_below, current_version=radis.__version__, last_compatible_version=OLDEST_COMPATIBLE_VERSION, verbose=verbose, ) if df is not None: return df # Detect the molecule by reading the start of the file try: with open(fname) as f: mol = get_molecule(int(f.read(2))) except UnicodeDecodeError as err: raise ValueError( "You're trying to read a binary file {0} ".format(fname) + "instead of an HITRAN file" ) from err # %% Start reading the full file df = parse_hitran_file(fname, columns) # %% Post processing # assert one molecule per database only. Else the groupbase data reading # above doesnt make sense nmol = len(set(df["id"])) if nmol == 0: raise ValueError("Databank looks empty") elif nmol != 1: # Crash, give explicity error messages try: secondline = df.iloc[1] except IndexError: secondline = "" raise ValueError( "Multiple molecules in database ({0}). Current ".format(nmol) + "spectral code only computes 1 species at the time. Use MergeSlabs. " + "Verify the parsing was correct by looking at the first row below: " + "\n{0}".format(df.iloc[0]) + "\n----------------\nand the second row " + "below: \n{0}".format(secondline) ) # Add local quanta attributes, based on the HITRAN group df = parse_local_quanta(df, mol) # Add global quanta attributes, based on the HITRAN class df = parse_global_quanta(df, mol) # Remove non numerical attributes if drop_non_numeric: if "branch" in df: replace_PQR_with_m101(df) df = drop_object_format_columns(df, verbose=verbose) # cached file mode but cached file doesn't exist yet (else we had returned) if cache: new_metadata = { # Last modification time of the original file : "last_modification": time.ctime(getmtime(fname)), "wavenum_min": df.wav.min(), "wavenum_max": df.wav.max(), } if verbose: print( "Generating cache file {0} with metadata :\n{1}".format( fcache, new_metadata ) ) try: save_to_hdf( df, fcache, metadata=new_metadata, version=radis.__version__, key="df", overwrite=True, verbose=verbose, ) except PermissionError: if verbose: print(sys.exc_info()) print("An error occured in cache file generation. Lookup access rights") pass # TODO : get only wavenum above/below 'load_wavenum_min', 'load_wavenum_max' # by parsing df.wav. Completely irrelevant files are discarded in 'load_h5_cache_file' # but files that have partly relevant lines are fully loaded. # Note : cache file is generated with the full line list. return df
def cdsd2df( fname, version="hitemp", cache=True, verbose=True, drop_non_numeric=True, load_wavenum_min=None, load_wavenum_max=None, ): """Convert a CDSD-HITEMP [1]_ or CDSD-4000 [2]_ file to a Pandas dataframe. Parameter ---------- fname: str CDSD file name version: str ('4000', 'hitemp') CDSD version cache: boolean, or 'regen' if ``True``, a pandas-readable HDF5 file is generated on first access, and later used. This saves on the datatype cast and conversion and improves performances a lot (but changes in the database are not taken into account). If ``False``, no database is used. If 'regen', temp file are reconstructed. Default ``True``. Other Parameters ---------------- drop_non_numeric: boolean if ``True``, non numeric columns are dropped. This improves performances, but make sure all the columns you need are converted to numeric formats before hand. Default ``True``. Note that if a cache file is loaded it will be left untouched. load_wavenum_min, load_wavenum_max: float if not ``'None'``, only load the cached file if it contains data for wavenumbers above/below the specified value. See :py:func`~radis.io.cache_files.load_h5_cache_file`. Default ``'None'``. Returns ------- df: pandas Dataframe dataframe containing all lines and parameters Notes ----- CDSD-4000 Database can be downloaded from [3]_ Performances: I had huge performance trouble with this function, because the files are huge (500k lines) and the format is to special (no space between numbers...) to apply optimized methods such as pandas's. A line by line reading isn't so bad, using struct to parse each line. However, we waste typing determining what every line is. I ended up using the fromfiles functions from numpy, not considering *\\n* (line return) as a special character anymore, and a second call to numpy to cast the correct format. That ended up being twice as fast. - initial: 20s / loop - with mmap: worse - w/o readline().rstrip('\\n'): still 20s - numpy fromfiles: 17s - no more readline, 2x fromfile 9s Think about using cache mode too: - no cache mode 9s - cache mode, first time 22s - cache mode, then 2s Moving to HDF5: On cdsd_02069_02070 (56 Mb) Reading:: cdsd2df(): 9.29 s cdsd2df(cache=True [old .txt version]): 2.3s cdsd2df(cache=True [new h5 version, table]): 910ms cdsd2df(cache=True [new h5 version, fixed]): 125ms Storage:: %timeit df.to_hdf("cdsd_02069_02070.h5", "df", format="fixed") 337ms %timeit df.to_hdf("cdsd_02069_02070.h5", "df", format="table") 1.03s References ---------- Note that CDSD-HITEMP is used as the line database for CO2 in HITEMP 2010 .. [1] `HITEMP 2010, Rothman et al., 2010 <https://www.sciencedirect.com/science/article/pii/S002240731000169X>`_ .. [2] `CDSD-4000 article, Tashkun et al., 2011 <https://www.sciencedirect.com/science/article/pii/S0022407311001154>`_ .. [3] `CDSD-4000 database <ftp://ftp.iao.ru/pub/CDSD-4000/>`_ See Also -------- :func:`~radis.io.hitran.hit2df` """ metadata = {} metadata["last_modification"] = time.ctime(getmtime(fname)) if load_wavenum_min and load_wavenum_max: assert load_wavenum_min < load_wavenum_max if verbose >= 2: print("Opening file {0} (format=CDSD {1}, cache={2})".format( fname, version, cache)) print("Last Modification time: {0}".format( metadata["last_modification"])) if version == "hitemp": columns = columns_hitemp elif version == "4000": columns = columns_4000 else: raise ValueError("Unknown CDSD version: {0}".format(version)) # Use cache file if possible fcache = cache_file_name(fname) if cache and exists(fcache): relevant_if_metadata_above = ( { "wavenum_max": load_wavenum_min } if load_wavenum_min else {} ) # not relevant if wavenum_max of file is < wavenum min required relevant_if_metadata_below = ( { "wavenum_min": load_wavenum_max } if load_wavenum_max else {} ) # not relevant if wavenum_min of file is > wavenum max required df = load_h5_cache_file( fcache, cache, valid_if_metadata_is=metadata, relevant_if_metadata_above=relevant_if_metadata_above, relevant_if_metadata_below=relevant_if_metadata_below, current_version=radis.__version__, last_compatible_version=OLDEST_COMPATIBLE_VERSION, verbose=verbose, ) if df is not None: return df # %% Start reading the full file df = parse_hitran_file(fname, columns) # Remove non numerical attributes if drop_non_numeric: replace_PQR_with_m101(df) df = drop_object_format_columns(df, verbose=verbose) # cached file mode but cached file doesn't exist yet (else we had returned) if cache: new_metadata = { # Last modification time of the original file : "last_modification": time.ctime(getmtime(fname)), "wavenum_min": df.wav.min(), "wavenum_max": df.wav.max(), } if verbose: print("Generating cache file {0} with metadata :\n{1}".format( fcache, new_metadata)) try: save_to_hdf( df, fcache, metadata=new_metadata, version=radis.__version__, key="df", overwrite=True, verbose=verbose, ) except PermissionError: if verbose: print( "An error occured in cache file generation. Lookup access rights" ) pass # TODO : get only wavenum above/below 'load_only_wavenum_above', 'load_only_wavenum_below' # by parsing df.wav. Completely irrelevant files are discarded in 'load_h5_cache_file' # but files that have partly relevant lines are fully loaded. # Note : cache file is generated with the full line list. return df