def cdsd2df(fname, version="hitemp", count=-1, cache=False, verbose=True, drop_non_numeric=True): """Convert a CDSD-HITEMP [1]_ or CDSD-4000 [2]_ file to a Pandas dataframe Parameters ---------- fname: str CDSD file name version: str ('4000', 'hitemp') CDSD version count: int number of items to read (-1 means all file) cache: boolean, or 'regen' if ``True``, a pandas-readable HDF5 file is generated on first access, and later used. This saves on the datatype cast and conversion and improves performances a lot (but changes in the database are not taken into account). If ``False``, no database is used. If 'regen', temp file are reconstructed. Default ``False``. Other Parameters ---------------- drop_non_numeric: boolean if ``True``, non numeric columns are dropped. This improves performances, but make sure all the columns you need are converted to numeric formats before hand. Default ``True``. Note that if a cache file is loaded it will be left untouched. Returns ------- df: pandas Dataframe dataframe containing all lines and parameters Notes ----- CDSD-4000 Database can be downloaded from [3]_ Performances: I had huge performance trouble with this function, because the files are huge (500k lines) and the format is to special (no space between numbers...) to apply optimized methods such as pandas's. A line by line reading isn't so bad, using struct to parse each line. However, we waste typing determining what every line is. I ended up using the fromfiles functions from numpy, not considering *\\n* (line return) as a special character anymore, and a second call to numpy to cast the correct format. That ended up being twice as fast. - initial: 20s / loop - with mmap: worse - w/o readline().rstrip('\\n'): still 20s - numpy fromfiles: 17s - no more readline, 2x fromfile 9s Think about using cache mode too: - no cache mode 9s - cache mode, first time 22s - cache mode, then 2s Moving to HDF5: On cdsd_02069_02070 (56 Mb) Reading:: cdsd2df(): 9.29 s cdsd2df(cache=True [old .txt version]): 2.3s cdsd2df(cache=True [new h5 version, table]): 910ms cdsd2df(cache=True [new h5 version, fixed]): 125ms Storage:: %timeit df.to_hdf("cdsd_02069_02070.h5", "df", format="fixed") 337ms %timeit df.to_hdf("cdsd_02069_02070.h5", "df", format="table") 1.03s References ---------- Note that CDSD-HITEMP is used as the line database for CO2 in HITEMP 2010 .. [1] `HITEMP 2010, Rothman et al., 2010 <https://www.sciencedirect.com/science/article/pii/S002240731000169X>`_ .. [2] `CDSD-4000 article, Tashkun et al., 2011 <https://www.sciencedirect.com/science/article/pii/S0022407311001154>`_ .. [3] `CDSD-4000 database <ftp://ftp.iao.ru/pub/CDSD-4000/>`_ See Also -------- :func:`~radis.io.hitran.hit2df` """ metadata = {} metadata["last_modification"] = time.ctime(getmtime(fname)) if verbose >= 2: print("Opening file {0} (format=CDSD {1}, cache={2})".format( fname, version, cache)) print("Last Modification time: {0}".format( metadata["last_modification"])) if version == "hitemp": columns = columns_hitemp elif version == "4000": columns = columns_4000 else: raise ValueError("Unknown CDSD version: {0}".format(version)) # Use cache file if possible fcache = cache_file_name(fname) if cache and exists(fcache): df = load_h5_cache_file( fcache, cache, metadata=metadata, current_version=radis.__version__, last_compatible_version=OLDEST_COMPATIBLE_VERSION, verbose=verbose, ) if df is not None: return df # %% Start reading the full file df = parse_hitran_file(fname, columns, count) # Remove non numerical attributes if drop_non_numeric: replace_PQR_with_m101(df) df = drop_object_format_columns(df, verbose=verbose) # cached file mode but cached file doesn't exist yet (else we had returned) if cache: if verbose: print("Generating cached file: {0}".format(fcache)) try: save_to_hdf( df, fcache, metadata=metadata, version=radis.__version__, key="df", overwrite=True, verbose=verbose, ) except: if verbose: print( "An error occured in cache file generation. Lookup access rights" ) pass return df
def __init__( self, energy_levels, isotope, levelsfmt, # ='cdsd-pc', use_cached=True, use_json=None, verbose=True, ): # %% Init # Initialize PartitionFunctionCalculator for this electronic state ElecState = ElectronicState("CO2", isotope, "X", "1Σu+") super(PartFuncCO2_CDSDcalc, self).__init__(ElecState) # Check inputs ('return' is not mentionned in signature. it will just return # after cache name is given) assert use_cached in [True, False, "regen", "force", "return"] if isotope not in [1, 2]: raise ValueError( "CDSD Energies not defined for isotope: {0}".format(isotope) ) if use_json is not None: warn( DeprecationWarning( "use_json replaced with faster HDF5-based use_cached" ) ) # Get vibrational level definitions that match Energy Database (in particular # how Evib and Erot are calculated) # This is needed to be able to match the levels in the Line Database and # the levels in the Energy database if levelsfmt == "cdsd-p": viblvl_label = "p" elif levelsfmt == "cdsd-pc": viblvl_label = "pc" elif levelsfmt == "cdsd-pcN": viblvl_label = "pcN" elif levelsfmt == "cdsd-hamil": viblvl_label = "pcJN" elif levelsfmt is None: # dont label the levels. Wont be able to use the EnergyDatabase to fetch # vibrational energies for lines, however it can still be used to # calculate Partition functions independently from a Spectrum calculation viblvl_label = None else: raise ValueError( "Unknown Energy database format: levelsfmt = `{0}`".format(levelsfmt) + ". Use one of: `cdsd-p`, `cdsd-pc`, `cdsd-pcN`,`cdsd-hamil`" ) # Store defaults self.verbose = verbose self.use_cached = use_cached self.levelsfmt = levelsfmt self.viblvl_label = viblvl_label # Get variables to store in metadata (after default values have been set) molecule = "CO2" # will be stored in cache file metadata _discard = [ "self", "energy_levels", "verbose", "ElecState", "electronic_state", "use_json", "use_cached", ] # (dev) locals() automatically stores all variables: levelsfmt, viblvl_label, etc. metadata = filter_metadata(locals(), discard_variables=_discard) # %% Get levels # Function of use_cached value: # ... if True, use (and generate if doesnt exist) cache file. # ... if 'regen', regenerate cache file. If 'force', raise an error # ... if file doesnt exist. # If file is deprecated, regenerate it unless 'force' was used # Load cache file if exists cachefile = energy_levels + ".h5" self.cachefile = cachefile # If return, return after cachefile generated (used for tests) if use_cached == "return": return df = load_h5_cache_file( cachefile, use_cached, metadata=metadata, current_version=radis.__version__, last_compatible_version=OLDEST_COMPATIBLE_VERSION, verbose=verbose, ) if df is None: # Read normal file df = pd.read_csv(energy_levels, comment="#", delim_whitespace=True) df = self._add_degeneracies(df) df = self._add_levels(df) self.df = df # Store if use_cached and not exists(cachefile): save_to_hdf( self.df, cachefile, metadata=metadata, version=radis.__version__, key="df", overwrite=True, verbose=verbose, )
def hit2df(fname, count=-1, cache=False, verbose=True, drop_non_numeric=True): """Convert a HITRAN/HITEMP [1]_ file to a Pandas dataframe Parameters ---------- fname: str HITRAN-HITEMP file name count: int number of items to read (-1 means all file) cache: boolean, or ``'regen'`` or ``'force'`` if ``True``, a pandas-readable HDF5 file is generated on first access, and later used. This saves on the datatype cast and conversion and improves performances a lot (but changes in the database are not taken into account). If False, no database is used. If ``'regen'``, temp file are reconstructed. Default ``False``. Other Parameters ---------------- drop_non_numeric: boolean if ``True``, non numeric columns are dropped. This improves performances, but make sure all the columns you need are converted to numeric formats before hand. Default ``True``. Note that if a cache file is loaded it will be left untouched. Returns ------- df: pandas Dataframe dataframe containing all lines and parameters References ---------- .. [1] `HITRAN 1996, Rothman et al., 1998 <https://www.sciencedirect.com/science/article/pii/S0022407398000788>`__ Notes ----- Performances: see CDSD-HITEMP parser See Also -------- :func:`~radis.io.cdsd.cdsd2df` """ metadata = {} # metadata["last_modification"] = time.ctime(getmtime(getTestFile(fname))) metadata["last_modification"] = time.ctime(getmtime(fname)) if verbose >= 2: print("Opening file {0} (cache={1})".format(fname, cache)) print("Last modification time: {0}".format( metadata["last_modification"])) columns = columns_2004 # Use cache file if possible fcache = cache_file_name(fname) if cache and exists(fcache): df = load_h5_cache_file( fcache, cache, metadata=metadata, current_version=radis.__version__, last_compatible_version=OLDEST_COMPATIBLE_VERSION, verbose=verbose, ) if df is not None: return df # Detect the molecule by reading the start of the file try: with open(fname) as f: mol = get_molecule(int(f.read(2))) except UnicodeDecodeError as err: raise ValueError( "You're trying to read a binary file {0} ".format(fname) + "instead of an HITRAN file") from err # %% Start reading the full file df = parse_hitran_file(fname, columns, count) # %% Post processing # assert one molecule per database only. Else the groupbase data reading # above doesnt make sense nmol = len(set(df["id"])) if nmol == 0: raise ValueError("Databank looks empty") elif nmol != 1: # Crash, give explicity error messages try: secondline = df.iloc[1] except IndexError: secondline = "" raise ValueError( "Multiple molecules in database ({0}). Current ".format(nmol) + "spectral code only computes 1 species at the time. Use MergeSlabs. " + "Verify the parsing was correct by looking at the first row below: " + "\n{0}".format(df.iloc[0]) + "\n----------------\nand the second row " + "below: \n{0}".format(secondline)) # dd local quanta attributes, based on the HITRAN group df = parse_local_quanta(df, mol) # Add global quanta attributes, based on the HITRAN class df = parse_global_quanta(df, mol) # Remove non numerical attributes if drop_non_numeric: if "branch" in df: replace_PQR_with_m101(df) df = drop_object_format_columns(df, verbose=verbose) # cached file mode but cached file doesn't exist yet (else we had returned) if cache: if verbose: print("Generating cached file: {0}".format(fcache)) try: save_to_hdf( df, fcache, metadata=metadata, version=radis.__version__, key="df", overwrite=True, verbose=verbose, ) except: if verbose: print(sys.exc_info()) print( "An error occured in cache file generation. Lookup access rights" ) pass return df