Example #1
0
def view_single_sentence_graph(sentence, modifiers, targets):
    context = markup_context_document(sentence, modifiers, targets)
    class_result = classrslts(context_document=context, exam_type="Chest X-Ray", report_text=sentence,
                              classification_result='N/A')
    rview.markup_to_pydot(class_result)
    display(Image("tmp.png"))
    print(sentence)
def marking_false_negatives(current_false_negatives, modifiers, targets):
    fn_report_results = []
    print('Marking up False Negatives')
    for anno_doc in current_false_negatives.values():
        report_context = markup_context_document(anno_doc.text, modifiers, targets)
        # package this up into a class that the RadNLP utilities can use
        results = classrslts(context_document=report_context, exam_type="Chest X-Ray", report_text=anno_doc.text, classification_result='N/A')
        fn_report_results.append(results)
    return fn_report_results
Example #3
0
def analyze_report(report, modifiers, targets, rules, schema):
    """
    given an individual radiology report, creates a pyConTextGraph
    object that contains the context markup
    report: a text string containing the radiology reports
    """
    markup = utils.mark_report(split.get_sentences(report),
                         modifiers,
                         targets)
    
    clssfy = classifier.classify_document_targets(markup,
                                                  rules[0],
                                                  rules[1],
                                                  rules[2],
                                                  schema)
    return classrslts(context_document=markup, exam_type="ctpa", report_text=report, classification_result=clssfy)