def test_fixed_knobs(self, budget):
     knob_config = {
         'fixed': FixedKnob('fixed'),
         'fixed2': FixedKnob(2),
         'early_stop': PolicyKnob('EARLY_STOP')
     }
     advisor = make_advisor(knob_config, budget)
     assert isinstance(advisor, FixedAdvisor)
Example #2
0
 def get_knob_config():
     return {
         'epochs': FixedKnob(2),
         'hidden_layer_count': IntegerKnob(1, 2),
         'hidden_layer_units': IntegerKnob(2, 128),
         'learning_rate': FloatKnob(1e-5, 1e-1, is_exp=True),
         'batch_size': CategoricalKnob([16, 32, 64, 128]),
         'image_size': FixedKnob(32)
     }
Example #3
0
 def get_knob_config():
     return {
         'max_epochs': FixedKnob(10),
         'learning_rate': FloatKnob(1e-5, 1e-2, is_exp=True),
         'batch_size': CategoricalKnob([16, 32, 64, 128]),
         'max_image_size': CategoricalKnob([32, 64, 128, 224]),
     }
Example #4
0
 def get_knob_config():
     return {
         'int': IntegerKnob(1, 32),
         'float': FloatKnob(1e-5, 1),
         'cat': CategoricalKnob(['a', 'b', 'c']),
         'fixed': FixedKnob('fixed')
     }
Example #5
0
    def get_knob_config():
        return {
            'trial_epochs': FixedKnob(300),
            'lr': FloatKnob(1e-4, 1, is_exp=True),
            'lr_decay': FloatKnob(1e-3, 1e-1, is_exp=True),
            'opt_momentum': FloatKnob(0.7, 1, is_exp=True),
            'opt_weight_decay': FloatKnob(1e-5, 1e-3, is_exp=True),
            'batch_size': CategoricalKnob([32, 64, 128]),
            'drop_rate': FloatKnob(0, 0.4),
            'max_image_size': FixedKnob(32),
            'share_params': PolicyKnob('SHARE_PARAMS'),

            # Affects whether training is shortened by using early stopping
            'quick_train': PolicyKnob('EARLY_STOP'),
            'early_stop_train_val_samples': FixedKnob(1024),
            'early_stop_patience_epochs': FixedKnob(5)
        }
Example #6
0
 def get_knob_config():
     return {
         'max_iter': FixedKnob(20),
         'kernel': CategoricalKnob(['rbf', 'linear', 'poly']),
         'gamma': CategoricalKnob(['scale', 'auto']),
         'C': FloatKnob(1e-4, 1e4, is_exp=True),
         'max_image_size': CategoricalKnob([16, 32])
     }
Example #7
0
 def get_knob_config():
     return {
         'epochs': FixedKnob(10),
         'word_embed_dims': IntegerKnob(16, 128),
         'word_rnn_hidden_size': IntegerKnob(16, 128),
         'word_dropout': FloatKnob(1e-3, 2e-1, is_exp=True),
         'learning_rate': FloatKnob(1e-2, 1e-1, is_exp=True),
         'batch_size': CategoricalKnob([16, 32, 64, 128]),
     }
Example #8
0
 def get_knob_config():
     return {
         'max_epochs': FixedKnob(10),
         'hidden_layer_count': IntegerKnob(1, 2),
         'hidden_layer_units': IntegerKnob(2, 128),
         'learning_rate': FloatKnob(1e-5, 1e-1, is_exp=True),
         'batch_size': CategoricalKnob([16, 32, 64, 128]),
         'max_image_size': CategoricalKnob([16, 32, 48]),
         'quick_train':
         PolicyKnob('EARLY_STOP')  # Whether early stopping would be used
     }
 def test_arch_knob_without_budget(self, budget, arch_knob):
     knob_config = {
         'arch': arch_knob,
         'fixed': FixedKnob('fixed'),
         'downscale': PolicyKnob('DOWNSCALE'),
         'early_stop': PolicyKnob('EARLY_STOP'),
         'skip_train': PolicyKnob('SKIP_TRAIN'),
         'quick_eval': PolicyKnob('QUICK_EVAL')
     }
     advisor = make_advisor(knob_config, budget)
     assert isinstance(advisor, RandomAdvisor)
 def test_arch_knob_with_enas_policies(self, day_budget, arch_knob):
     knob_config = {
         'arch': arch_knob,
         'fixed': FixedKnob('fixed'),
         'share_params': PolicyKnob('SHARE_PARAMS'),
         'downscale': PolicyKnob('DOWNSCALE'),
         'early_stop': PolicyKnob('EARLY_STOP'),
         'skip_train': PolicyKnob('SKIP_TRAIN'),
         'quick_eval': PolicyKnob('QUICK_EVAL')
     }
     advisor = make_advisor(knob_config, day_budget)
     assert isinstance(advisor, EnasAdvisor)