def experiment(variant):

    ptu.set_gpu_mode(True, 0)

    imsize = variant['imsize']

    env = ImageForkReacher2dEnv(variant["arm_goal_distance_cost_coeff"],
                                variant["arm_object_distance_cost_coeff"],
                                [imsize, imsize, 3],
                                goal_object_distance_cost_coeff=variant[
                                    "goal_object_distance_cost_coeff"],
                                ctrl_cost_coeff=variant["ctrl_cost_coeff"])

    partial_obs_size = env.obs_dim - imsize * imsize * 3
    print("partial dim was " + str(partial_obs_size))
    env = NormalizedBoxEnv(env)

    obs_dim = int(np.prod(env.observation_space.shape))
    action_dim = int(np.prod(env.action_space.shape))

    qf1 = MergedCNN(input_width=imsize,
                    input_height=imsize,
                    output_size=1,
                    input_channels=3,
                    added_fc_input_size=action_dim,
                    **variant['cnn_params'])

    qf2 = MergedCNN(input_width=imsize,
                    input_height=imsize,
                    output_size=1,
                    input_channels=3,
                    added_fc_input_size=action_dim,
                    **variant['cnn_params'])

    vf = CNN(input_width=imsize,
             input_height=imsize,
             output_size=1,
             input_channels=3,
             **variant['cnn_params'])

    policy = TanhCNNGaussianPolicy(input_width=imsize,
                                   input_height=imsize,
                                   output_size=action_dim,
                                   input_channels=3,
                                   **variant['cnn_params'])

    algorithm = TwinSAC(env=env,
                        policy=policy,
                        qf1=qf1,
                        qf2=qf2,
                        vf=vf,
                        **variant['algo_params'])

    algorithm.to(ptu.device)
    algorithm.train()
def experiment(variant):
    imsize = variant['imsize']
    history = variant['history']

    env = Pusher2DEnv()#gym.make(variant['env_id']).env
    env = NormalizedBoxEnv(ImageMujocoEnv(env,
                                    imsize=imsize,
                                    keep_prev=history - 1,
                                    init_camera=variant['init_camera']))
#    es = GaussianStrategy(
#        action_space=env.action_space,
#    )
    es = OUStrategy(action_space=env.action_space)
    obs_dim = env.observation_space.low.size
    action_dim = env.action_space.low.size

    qf = MergedCNN(input_width=imsize,
                   input_height=imsize,
                   output_size=1,
                   input_channels= history,
                   added_fc_input_size=action_dim,
                   **variant['cnn_params'])

    vf  = CNN(input_width=imsize,
               input_height=imsize,
               output_size=1,
               input_channels=history,
               **variant['cnn_params'])

    policy = TanhCNNGaussianPolicy(input_width=imsize,
                                   input_height=imsize,
                                   output_size=action_dim,
                                   input_channels=history,
                                   **variant['cnn_params'],
    )


    algorithm = SoftActorCritic(
        env=env,
        policy=policy,
        qf=qf,
        vf=vf,
        **variant['algo_params']
    )

    algorithm.to(ptu.device)
    algorithm.train()
Example #3
0
def experiment(variant):
    from railrl.core import logger
    import railrl.torch.pytorch_util as ptu
    ptu.set_gpu_mode(True)
    info = dict()
    logger.save_extra_data(info)
    logger.get_snapshot_dir()
    net = CNN(**variant['cnn_kwargs'])
    net.cuda()
    num_divisions = variant['num_divisions']
    images = np.zeros((num_divisions * 10000, 21168))
    states = np.zeros((num_divisions * 10000, 7))
    for i in range(num_divisions):
        imgs = np.load(
            '/home/murtaza/vae_data/sawyer_torque_control_images100000_' +
            str(i + 1) + '.npy')
        state = np.load(
            '/home/murtaza/vae_data/sawyer_torque_control_states100000_' +
            str(i + 1) + '.npy')[:, :7] % (2 * np.pi)
        images[i * 10000:(i + 1) * 10000] = imgs
        states[i * 10000:(i + 1) * 10000] = state
        print(i)
    if variant['normalize']:
        std = np.std(states, axis=0)
        mu = np.mean(states, axis=0)
        states = np.divide((states - mu), std)
        print(mu, std)
    mid = int(num_divisions * 10000 * .9)
    train_images, test_images = images[:mid], images[mid:]
    train_labels, test_labels = states[:mid], states[mid:]

    algo = SupervisedAlgorithm(train_images,
                               test_images,
                               train_labels,
                               test_labels,
                               net,
                               batch_size=variant['batch_size'],
                               lr=variant['lr'],
                               weight_decay=variant['weight_decay'])
    for epoch in range(variant['num_epochs']):
        algo.train_epoch(epoch)
        algo.test_epoch(epoch)
Example #4
0
def experiment(variant):
    imsize = variant['imsize']
    history = variant['history']

    env = gym.make(variant['env_id']).env
    training_env = gym.make(variant['env_id']).env

    env = NormalizedBoxEnv(env)
    training_env = NormalizedBoxEnv(training_env)

    env = ImageMujocoEnv(env,
                         imsize=imsize,
                         keep_prev=history - 1,
                         init_camera=variant['init_camera'])
    training_env = ImageMujocoEnv(training_env,
                                  imsize=imsize,
                                  keep_prev=history - 1,
                                  init_camera=variant['init_camera'])

    env = DiscretizeEnv(env, variant['bins'])
    training_env = DiscretizeEnv(training_env, variant['bins'])

    qf = CNN(output_size=env.action_space.n,
             input_width=imsize,
             input_height=imsize,
             input_channels=history,
             **variant['cnn_params'])

    qf_criterion = variant['qf_criterion_class']()
    algorithm = variant['algo_class'](env,
                                      training_env=training_env,
                                      qf=qf,
                                      qf_criterion=qf_criterion,
                                      **variant['algo_params'])
    algorithm.to(ptu.device)
    algorithm.train()
Example #5
0
def experiment(variant):
    import multiworld.envs.pygame
    env = gym.make('Point2DEnv-ImageFixedGoal-v0')
    input_width, input_height = env.image_shape

    action_dim = int(np.prod(env.action_space.shape))
    cnn_params = variant['cnn_params']
    cnn_params.update(
        input_width=input_width,
        input_height=input_height,
        input_channels=3,
        output_conv_channels=True,
        output_size=None,
    )
    if variant['shared_qf_conv']:
        qf_cnn = CNN(**cnn_params)
        qf1 = MlpQfWithObsProcessor(
            obs_processor=qf_cnn,
            output_size=1,
            input_size=action_dim+qf_cnn.conv_output_flat_size,
            **variant['qf_kwargs']
        )
        qf2 = MlpQfWithObsProcessor(
            obs_processor=qf_cnn,
            output_size=1,
            input_size=action_dim+qf_cnn.conv_output_flat_size,
            **variant['qf_kwargs']
        )
        target_qf_cnn = CNN(**cnn_params)
        target_qf1 = MlpQfWithObsProcessor(
            obs_processor=target_qf_cnn,
            output_size=1,
            input_size=action_dim+qf_cnn.conv_output_flat_size,
            **variant['qf_kwargs']
        )
        target_qf2 = MlpQfWithObsProcessor(
            obs_processor=target_qf_cnn,
            output_size=1,
            input_size=action_dim+qf_cnn.conv_output_flat_size,
            **variant['qf_kwargs']
        )
    else:
        qf1_cnn = CNN(**cnn_params)
        cnn_output_dim = qf1_cnn.conv_output_flat_size
        qf1 = MlpQfWithObsProcessor(
            obs_processor=qf1_cnn,
            output_size=1,
            input_size=action_dim+cnn_output_dim,
            **variant['qf_kwargs']
        )
        qf2 = MlpQfWithObsProcessor(
            obs_processor=CNN(**cnn_params),
            output_size=1,
            input_size=action_dim+cnn_output_dim,
            **variant['qf_kwargs']
        )
        target_qf1 = MlpQfWithObsProcessor(
            obs_processor=CNN(**cnn_params),
            output_size=1,
            input_size=action_dim+cnn_output_dim,
            **variant['qf_kwargs']
        )
        target_qf2 = MlpQfWithObsProcessor(
            obs_processor=CNN(**cnn_params),
            output_size=1,
            input_size=action_dim+cnn_output_dim,
            **variant['qf_kwargs']
        )
    action_dim = int(np.prod(env.action_space.shape))
    policy_cnn = CNN(**cnn_params)
    policy = TanhGaussianPolicyAdapter(
        policy_cnn,
        policy_cnn.conv_output_flat_size,
        action_dim,
        **variant['policy_kwargs']
    )
    eval_env = expl_env = env

    eval_policy = MakeDeterministic(policy)
    eval_path_collector = MdpPathCollector(
        eval_env,
        eval_policy,
        **variant['eval_path_collector_kwargs']
    )
    replay_buffer = EnvReplayBuffer(
        variant['replay_buffer_size'],
        expl_env,
    )
    trainer = SACTrainer(
        env=eval_env,
        policy=policy,
        qf1=qf1,
        qf2=qf2,
        target_qf1=target_qf1,
        target_qf2=target_qf2,
        **variant['trainer_kwargs']
    )
    if variant['collection_mode'] == 'batch':
        expl_path_collector = MdpPathCollector(
            expl_env,
            policy,
            **variant['expl_path_collector_kwargs']
        )
        algorithm = TorchBatchRLAlgorithm(
            trainer=trainer,
            exploration_env=expl_env,
            evaluation_env=eval_env,
            exploration_data_collector=expl_path_collector,
            evaluation_data_collector=eval_path_collector,
            replay_buffer=replay_buffer,
            **variant['algo_kwargs']
        )
    elif variant['collection_mode'] == 'online':
        expl_path_collector = MdpStepCollector(
            expl_env,
            policy,
            **variant['expl_path_collector_kwargs']
        )
        algorithm = TorchOnlineRLAlgorithm(
            trainer=trainer,
            exploration_env=expl_env,
            evaluation_env=eval_env,
            exploration_data_collector=expl_path_collector,
            evaluation_data_collector=eval_path_collector,
            replay_buffer=replay_buffer,
            **variant['algo_kwargs']
        )
    algorithm.to(ptu.device)
    algorithm.train()
Example #6
0
def experiment(variant):
    #expl_env = carla_env.CarlaObsDictEnv(args=variant['env_args'])
    import gym
    import d4rl.carla
    expl_env = gym.make('carla-lane-dict-v0')

    eval_env = expl_env
    #num_channels, img_width, img_height = eval_env._wrapped_env.image_shape
    num_channels, img_width, img_height = eval_env.image_shape
    # num_channels = 3
    action_dim = int(np.prod(eval_env.action_space.shape))
    # obs_dim = 11

    cnn_params = variant['cnn_params']
    cnn_params.update(
        input_width=img_width,
        input_height=img_height,
        input_channels=num_channels,
        added_fc_input_size=0,
        output_conv_channels=True,
        output_size=None,
    )

    qf_cnn = CNN(**cnn_params)
    qf_obs_processor = nn.Sequential(
        qf_cnn,
        Flatten(),
    )

    qf_kwargs = copy.deepcopy(variant['qf_kwargs'])
    qf_kwargs['obs_processor'] = qf_obs_processor
    qf_kwargs['output_size'] = 1
    qf_kwargs['input_size'] = (action_dim + qf_cnn.conv_output_flat_size)
    qf1 = MlpQfWithObsProcessor(**qf_kwargs)
    qf2 = MlpQfWithObsProcessor(**qf_kwargs)

    target_qf_cnn = CNN(**cnn_params)
    target_qf_obs_processor = nn.Sequential(
        target_qf_cnn,
        Flatten(),
    )

    target_qf_kwargs = copy.deepcopy(variant['qf_kwargs'])
    target_qf_kwargs['obs_processor'] = target_qf_obs_processor
    target_qf_kwargs['output_size'] = 1
    target_qf_kwargs['input_size'] = (action_dim +
                                      target_qf_cnn.conv_output_flat_size)

    target_qf1 = MlpQfWithObsProcessor(**target_qf_kwargs)
    target_qf2 = MlpQfWithObsProcessor(**target_qf_kwargs)

    action_dim = int(np.prod(eval_env.action_space.shape))
    policy_cnn = CNN(**cnn_params)
    policy_obs_processor = nn.Sequential(
        policy_cnn,
        Flatten(),
    )
    policy = TanhGaussianPolicyAdapter(policy_obs_processor,
                                       policy_cnn.conv_output_flat_size,
                                       action_dim, **variant['policy_kwargs'])

    eval_policy = MakeDeterministic(policy)
    observation_key = 'image'

    eval_path_collector = ObsDictPathCollector(
        eval_env,
        eval_policy,
        observation_key=observation_key,
        **variant['eval_path_collector_kwargs'])

    expl_path_collector = CustomObsDictPathCollector(
        expl_env,
        observation_key=observation_key,
    )

    observation_key = 'image'
    replay_buffer = ObsDictReplayBuffer(
        variant['replay_buffer_size'],
        expl_env,
        observation_key=observation_key,
    )
    load_hdf5(expl_env, replay_buffer)
    #load_buffer(buffer_path=variant['buffer'], replay_buffer=replay_buffer)
    # import ipdb; ipdb.set_trace()

    trainer = SACTrainer(env=eval_env,
                         policy=policy,
                         qf1=qf1,
                         qf2=qf2,
                         target_qf1=target_qf1,
                         target_qf2=target_qf2,
                         behavior_policy=None,
                         **variant['trainer_kwargs'])
    variant['algo_kwargs']['max_path_length'] = expl_env._max_episode_steps
    algorithm = TorchBatchRLAlgorithm(
        trainer=trainer,
        exploration_env=expl_env,
        evaluation_env=eval_env,
        exploration_data_collector=expl_path_collector,
        evaluation_data_collector=eval_path_collector,
        replay_buffer=replay_buffer,
        eval_both=True,
        batch_rl=True,
        **variant['algorithm_kwargs'])

    video_func = VideoSaveFunctionBullet(variant)
    algorithm.post_train_funcs.append(video_func)

    algorithm.to(ptu.device)
    algorithm.train()
def experiment(variant):
    # from softlearning.environments.gym import register_image_reach
    # register_image_reach()
    # env = gym.envs.make(
    #     'Pusher2d-ImageReach-v0',
    # )
    from softlearning.environments.gym.mujoco.image_pusher_2d import (
        ImageForkReacher2dEnv)

    env_kwargs = {
        'image_shape': (32, 32, 3),
        'arm_goal_distance_cost_coeff': 1.0,
        'arm_object_distance_cost_coeff': 0.0,
    }

    eval_env = ImageForkReacher2dEnv(**env_kwargs)
    expl_env = ImageForkReacher2dEnv(**env_kwargs)

    input_width, input_height, input_channels = eval_env.image_shape
    image_dim = input_width * input_height * input_channels

    action_dim = int(np.prod(eval_env.action_space.shape))
    cnn_params = variant['cnn_params']
    cnn_params.update(
        input_width=input_width,
        input_height=input_height,
        input_channels=input_channels,
        added_fc_input_size=4,
        output_conv_channels=True,
        output_size=None,
    )
    non_image_dim = int(np.prod(eval_env.observation_space.shape)) - image_dim
    if variant['shared_qf_conv']:
        qf_cnn = CNN(**cnn_params)
        qf_obs_processor = nn.Sequential(
            Split(qf_cnn, identity, image_dim),
            FlattenEach(),
            Concat(),
        )

        qf_kwargs = copy.deepcopy(variant['qf_kwargs'])
        qf_kwargs['obs_processor'] = qf_obs_processor
        qf_kwargs['output_size'] = 1
        qf_kwargs['input_size'] = (action_dim + qf_cnn.conv_output_flat_size +
                                   non_image_dim)
        qf1 = MlpQfWithObsProcessor(**qf_kwargs)
        qf2 = MlpQfWithObsProcessor(**qf_kwargs)

        target_qf_cnn = CNN(**cnn_params)
        target_qf_obs_processor = nn.Sequential(
            Split(target_qf_cnn, identity, image_dim),
            FlattenEach(),
            Concat(),
        )
        target_qf_kwargs = copy.deepcopy(variant['qf_kwargs'])
        target_qf_kwargs['obs_processor'] = target_qf_obs_processor
        target_qf_kwargs['output_size'] = 1
        target_qf_kwargs['input_size'] = (action_dim +
                                          target_qf_cnn.conv_output_flat_size +
                                          non_image_dim)
        target_qf1 = MlpQfWithObsProcessor(**target_qf_kwargs)
        target_qf2 = MlpQfWithObsProcessor(**target_qf_kwargs)
    else:
        qf1_cnn = CNN(**cnn_params)
        cnn_output_dim = qf1_cnn.conv_output_flat_size
        qf1 = MlpQfWithObsProcessor(obs_processor=qf1_cnn,
                                    output_size=1,
                                    input_size=action_dim + cnn_output_dim,
                                    **variant['qf_kwargs'])
        qf2 = MlpQfWithObsProcessor(obs_processor=CNN(**cnn_params),
                                    output_size=1,
                                    input_size=action_dim + cnn_output_dim,
                                    **variant['qf_kwargs'])
        target_qf1 = MlpQfWithObsProcessor(obs_processor=CNN(**cnn_params),
                                           output_size=1,
                                           input_size=action_dim +
                                           cnn_output_dim,
                                           **variant['qf_kwargs'])
        target_qf2 = MlpQfWithObsProcessor(obs_processor=CNN(**cnn_params),
                                           output_size=1,
                                           input_size=action_dim +
                                           cnn_output_dim,
                                           **variant['qf_kwargs'])
    action_dim = int(np.prod(eval_env.action_space.shape))
    policy_cnn = CNN(**cnn_params)
    policy_obs_processor = nn.Sequential(
        Split(policy_cnn, identity, image_dim),
        FlattenEach(),
        Concat(),
    )
    policy = TanhGaussianPolicyAdapter(
        policy_obs_processor, policy_cnn.conv_output_flat_size + non_image_dim,
        action_dim, **variant['policy_kwargs'])

    eval_policy = MakeDeterministic(policy)
    eval_path_collector = MdpPathCollector(
        eval_env, eval_policy, **variant['eval_path_collector_kwargs'])
    replay_buffer = EnvReplayBuffer(
        variant['replay_buffer_size'],
        expl_env,
    )
    trainer = SACTrainer(env=eval_env,
                         policy=policy,
                         qf1=qf1,
                         qf2=qf2,
                         target_qf1=target_qf1,
                         target_qf2=target_qf2,
                         **variant['trainer_kwargs'])
    if variant['collection_mode'] == 'batch':
        expl_path_collector = MdpPathCollector(
            expl_env, policy, **variant['expl_path_collector_kwargs'])
        algorithm = TorchBatchRLAlgorithm(
            trainer=trainer,
            exploration_env=expl_env,
            evaluation_env=eval_env,
            exploration_data_collector=expl_path_collector,
            evaluation_data_collector=eval_path_collector,
            replay_buffer=replay_buffer,
            **variant['algo_kwargs'])
    elif variant['collection_mode'] == 'online':
        expl_path_collector = MdpStepCollector(
            expl_env, policy, **variant['expl_path_collector_kwargs'])
        algorithm = TorchOnlineRLAlgorithm(
            trainer=trainer,
            exploration_env=expl_env,
            evaluation_env=eval_env,
            exploration_data_collector=expl_path_collector,
            evaluation_data_collector=eval_path_collector,
            replay_buffer=replay_buffer,
            **variant['algo_kwargs'])
    algorithm.to(ptu.device)
    algorithm.train()
Example #8
0
def experiment(variant):

    expl_env = roboverse.make(variant['env'], gui=False, randomize=True,
                              observation_mode=variant['obs'], reward_type='shaped',
                              transpose_image=True)

    eval_env = expl_env
    img_width, img_height = eval_env.image_shape
    num_channels = 3

    action_dim = int(np.prod(eval_env.action_space.shape))
    cnn_params = variant['cnn_params']
    cnn_params.update(
        input_width=img_width,
        input_height=img_height,
        input_channels=num_channels,
        added_fc_input_size=0,
        output_conv_channels=True,
        output_size=None,
    )

    qf_cnn = CNN(**cnn_params)
    qf_obs_processor = nn.Sequential(
        qf_cnn,
        Flatten(),
    )

    qf_kwargs = copy.deepcopy(variant['qf_kwargs'])
    qf_kwargs['obs_processor'] = qf_obs_processor
    qf_kwargs['output_size'] = 1
    qf_kwargs['input_size'] = (
            action_dim + qf_cnn.conv_output_flat_size
    )
    qf1 = MlpQfWithObsProcessor(**qf_kwargs)
    qf2 = MlpQfWithObsProcessor(**qf_kwargs)

    target_qf_cnn = CNN(**cnn_params)
    target_qf_obs_processor = nn.Sequential(
        target_qf_cnn,
        Flatten(),
    )

    target_qf_kwargs = copy.deepcopy(variant['qf_kwargs'])
    target_qf_kwargs['obs_processor'] = target_qf_obs_processor
    target_qf_kwargs['output_size'] = 1
    target_qf_kwargs['input_size'] = (
            action_dim + target_qf_cnn.conv_output_flat_size
    )

    target_qf1 = MlpQfWithObsProcessor(**target_qf_kwargs)
    target_qf2 = MlpQfWithObsProcessor(**target_qf_kwargs)

    action_dim = int(np.prod(eval_env.action_space.shape))
    policy_cnn = CNN(**cnn_params)
    policy_obs_processor = nn.Sequential(
        policy_cnn,
        Flatten(),
    )

    policy = GaussianMixtureObsProcessorPolicy(
        obs_dim=policy_cnn.conv_output_flat_size,
        action_dim=action_dim,
        obs_processor=policy_obs_processor,
        **variant['policy_kwargs']
    )

    buffer_policy = GaussianMixtureObsProcessorPolicy(
        obs_dim=policy_cnn.conv_output_flat_size,
        action_dim=action_dim,
        obs_processor=policy_obs_processor,
        **variant['policy_kwargs']
    )

    # policy = TanhGaussianPolicyAdapter(
    #     policy_obs_processor,
    #     policy_cnn.conv_output_flat_size,
    #     action_dim,
    #     **variant['policy_kwargs']
    # )

    # buffer_policy = TanhGaussianPolicyAdapter(
    #     policy_obs_processor,
    #     policy_cnn.conv_output_flat_size,
    #     action_dim,
    #     **variant['policy_kwargs']
    # )

    observation_key = 'image'
    replay_buffer = ObsDictReplayBuffer(
        variant['replay_buffer_size'],
        expl_env,
        observation_key=observation_key,
    )

    trainer = AWRSACTrainer(
        env=eval_env,
        policy=policy,
        qf1=qf1,
        qf2=qf2,
        target_qf1=target_qf1,
        target_qf2=target_qf2,
        buffer_policy=buffer_policy,
        **variant['trainer_kwargs']
    )

    expl_policy = policy
    expl_path_collector = ObsDictPathCollector(
        expl_env,
        expl_policy,
        observation_key=observation_key,
        **variant['expl_path_collector_kwargs']
    )

    eval_policy = MakeDeterministic(policy)
    eval_path_collector = ObsDictPathCollector(
        eval_env,
        eval_policy,
        observation_key=observation_key,
        **variant['eval_path_collector_kwargs']
    )

    algorithm = TorchBatchRLAlgorithm(
        trainer=trainer,
        exploration_env=expl_env,
        evaluation_env=eval_env,
        exploration_data_collector=expl_path_collector,
        evaluation_data_collector=eval_path_collector,
        replay_buffer=replay_buffer,
        max_path_length=variant['max_path_length'],
        batch_size=variant['batch_size'],
        num_epochs=variant['num_epochs'],
        num_eval_steps_per_epoch=variant['num_eval_steps_per_epoch'],
        num_expl_steps_per_train_loop=variant['num_expl_steps_per_train_loop'],
        num_trains_per_train_loop=variant['num_trains_per_train_loop'],
        min_num_steps_before_training=variant['min_num_steps_before_training'],
    )

    algorithm.to(ptu.device)

    demo_train_buffer = ObsDictReplayBuffer(
        variant['replay_buffer_size'],
        expl_env,
        observation_key=observation_key,
    )

    demo_test_buffer = ObsDictReplayBuffer(
        variant['replay_buffer_size'],
        expl_env,
        observation_key=observation_key,
    )


    path_loader_kwargs = variant.get("path_loader_kwargs", {})

    video_func = VideoSaveFunctionBullet(variant)
    algorithm.post_train_funcs.append(video_func)

    save_paths = None  # FIXME(avi)
    if variant.get('save_paths', False):
        algorithm.post_train_funcs.append(save_paths)
    if variant.get('load_demos', False):
        path_loader_class = variant.get('path_loader_class', MDPPathLoader)
        path_loader = path_loader_class(trainer,
            replay_buffer=replay_buffer,
            demo_train_buffer=demo_train_buffer,
            demo_test_buffer=demo_test_buffer,
            **path_loader_kwargs
        )
        path_loader.load_demos()
    if variant.get('pretrain_policy', False):
        trainer.pretrain_policy_with_bc()
    if variant.get('pretrain_rl', False):
        trainer.pretrain_q_with_bc_data()
    if variant.get('save_pretrained_algorithm', False):
        p_path = osp.join(logger.get_snapshot_dir(), 'pretrain_algorithm.p')
        pt_path = osp.join(logger.get_snapshot_dir(), 'pretrain_algorithm.pt')
        data = algorithm._get_snapshot()
        data['algorithm'] = algorithm
        torch.save(data, open(pt_path, "wb"))
        torch.save(data, open(p_path, "wb"))
    if variant.get('train_rl', True):
        algorithm.train()
def experiment(variant):

    ptu.set_gpu_mode(True, 0)

    from softlearning.environments.gym import register_image_reach
    register_image_reach()
    env = gym.make('Pusher2d-ImageReach-v0', arm_goal_distance_cost_coeff=1.0, arm_object_distance_cost_coeff=0.0)

    #import ipdb; ipdb.set_trace()
    input_width, input_height = env.image_shape

    action_dim = int(np.prod(env.action_space.shape))
    cnn_params = variant['cnn_params']
    cnn_params.update(
        input_width=input_width,
        input_height=input_height,
        input_channels=3,
        added_fc_input_size=4,
        output_conv_channels=True,
        output_size=None,
    )
    if variant['shared_qf_conv']:
        qf_cnn = CNN(**cnn_params)
        qf1 = MlpQfWithObsProcessor(
            obs_processor=qf_cnn,
            output_size=1,
            input_size=action_dim+qf_cnn.conv_output_flat_size,
            **variant['qf_kwargs']
        )
        qf2 = MlpQfWithObsProcessor(
            obs_processor=qf_cnn,
            output_size=1,
            input_size=action_dim+qf_cnn.conv_output_flat_size,
            **variant['qf_kwargs']
        )
        target_qf_cnn = CNN(**cnn_params)
        target_qf1 = MlpQfWithObsProcessor(
            obs_processor=target_qf_cnn,
            output_size=1,
            input_size=action_dim+qf_cnn.conv_output_flat_size,
            **variant['qf_kwargs']
        )
        target_qf2 = MlpQfWithObsProcessor(
            obs_processor=target_qf_cnn,
            output_size=1,
            input_size=action_dim+qf_cnn.conv_output_flat_size,
            **variant['qf_kwargs']
        )
    else:
        qf1_cnn = CNN(**cnn_params)
        cnn_output_dim = qf1_cnn.conv_output_flat_size
        qf1 = MlpQfWithObsProcessor(
            obs_processor=qf1_cnn,
            output_size=1,
            input_size=action_dim+cnn_output_dim,
            **variant['qf_kwargs']
        )
        qf2 = MlpQfWithObsProcessor(
            obs_processor=CNN(**cnn_params),
            output_size=1,
            input_size=action_dim+cnn_output_dim,
            **variant['qf_kwargs']
        )
        target_qf1 = MlpQfWithObsProcessor(
            obs_processor=CNN(**cnn_params),
            output_size=1,
            input_size=action_dim+cnn_output_dim,
            **variant['qf_kwargs']
        )
        target_qf2 = MlpQfWithObsProcessor(
            obs_processor=CNN(**cnn_params),
            output_size=1,
            input_size=action_dim+cnn_output_dim,
            **variant['qf_kwargs']
        )
    action_dim = int(np.prod(env.action_space.shape))
    policy_cnn = CNN(**cnn_params)
    policy = TanhGaussianPolicyAdapter(
        policy_cnn,
        policy_cnn.conv_output_flat_size,
        action_dim,
    )
    eval_env = expl_env = env

    eval_policy = MakeDeterministic(policy)
    eval_path_collector = MdpPathCollector(
        eval_env,
        eval_policy,
        **variant['eval_path_collector_kwargs']
    )
    replay_buffer = EnvReplayBuffer(
        variant['replay_buffer_size'],
        expl_env,
    )
    trainer = SACTrainer(
        env=eval_env,
        policy=policy,
        qf1=qf1,
        qf2=qf2,
        target_qf1=target_qf1,
        target_qf2=target_qf2,
        **variant['trainer_kwargs']
    )
    if variant['collection_mode'] == 'batch':
        expl_path_collector = MdpPathCollector(
            expl_env,
            policy,
            **variant['expl_path_collector_kwargs']
        )
        algorithm = TorchBatchRLAlgorithm(
            trainer=trainer,
            exploration_env=expl_env,
            evaluation_env=eval_env,
            exploration_data_collector=expl_path_collector,
            evaluation_data_collector=eval_path_collector,
            replay_buffer=replay_buffer,
            **variant['algo_kwargs']
        )
    elif variant['collection_mode'] == 'online':
        expl_path_collector = MdpStepCollector(
            expl_env,
            policy,
            **variant['expl_path_collector_kwargs']
        )
        algorithm = TorchOnlineRLAlgorithm(
            trainer=trainer,
            exploration_env=expl_env,
            evaluation_env=eval_env,
            exploration_data_collector=expl_path_collector,
            evaluation_data_collector=eval_path_collector,
            replay_buffer=replay_buffer,
            **variant['algo_kwargs']
        )
    elif variant['collection_mode'] == 'parallel':
        expl_path_collector = MdpPathCollector(
            expl_env,
            policy,
            **variant['expl_path_collector_kwargs']
        )
        algorithm = TorchParallelRLAlgorithm(
            trainer=trainer,
            exploration_env=expl_env,
            evaluation_env=eval_env,
            exploration_data_collector=expl_path_collector,
            evaluation_data_collector=eval_path_collector,
            replay_buffer=replay_buffer,
            **variant['algo_kwargs']
        )
    algorithm.to(ptu.device)
    algorithm.train()
Example #10
0
def experiment(variant):
    from multiworld.envs.mujoco import register_goal_example_envs
    register_goal_example_envs()

    eval_env = gym.make('Image48SawyerPushForwardEnv-v0')
    expl_env = gym.make('Image48SawyerPushForwardEnv-v0')
    # Hack for now
    eval_env.wrapped_env.transpose = True
    expl_env.wrapped_env.transpose = True
    # More hacks, use a dense reward instead
    eval_env.wrapped_env.wrapped_env.reward_type = 'puck_distance'
    expl_env.wrapped_env.wrapped_env.reward_type = 'puck_distance'

    img_width, img_height = eval_env.image_shape
    num_channels = 3

    action_dim = int(np.prod(eval_env.action_space.shape))
    cnn_params = variant['cnn_params']
    cnn_params.update(
        input_width=img_width,
        input_height=img_height,
        input_channels=num_channels,
        added_fc_input_size=4,
        output_conv_channels=True,
        output_size=None,
    )

    qf_cnn = CNN(**cnn_params)
    qf_obs_processor = nn.Sequential(
        qf_cnn,
        Flatten(),
    )

    qf_kwargs = copy.deepcopy(variant['qf_kwargs'])
    qf_kwargs['obs_processor'] = qf_obs_processor
    qf_kwargs['output_size'] = 1
    qf_kwargs['input_size'] = (action_dim + qf_cnn.conv_output_flat_size)
    qf1 = MlpQfWithObsProcessor(**qf_kwargs)
    qf2 = MlpQfWithObsProcessor(**qf_kwargs)

    target_qf_cnn = CNN(**cnn_params)
    target_qf_obs_processor = nn.Sequential(
        target_qf_cnn,
        Flatten(),
    )
    target_qf_kwargs = copy.deepcopy(variant['qf_kwargs'])
    target_qf_kwargs['obs_processor'] = target_qf_obs_processor
    target_qf_kwargs['output_size'] = 1
    target_qf_kwargs['input_size'] = (action_dim +
                                      target_qf_cnn.conv_output_flat_size)
    target_qf1 = MlpQfWithObsProcessor(**target_qf_kwargs)
    target_qf2 = MlpQfWithObsProcessor(**target_qf_kwargs)

    action_dim = int(np.prod(eval_env.action_space.shape))
    policy_cnn = CNN(**cnn_params)
    policy_obs_processor = nn.Sequential(
        policy_cnn,
        Flatten(),
    )
    policy = TanhGaussianPolicyAdapter(policy_obs_processor,
                                       policy_cnn.conv_output_flat_size,
                                       action_dim, **variant['policy_kwargs'])

    eval_policy = MakeDeterministic(policy)
    eval_path_collector = MdpPathCollector(
        eval_env, eval_policy, **variant['eval_path_collector_kwargs'])
    replay_buffer = EnvReplayBuffer(
        variant['replay_buffer_size'],
        expl_env,
    )
    trainer = SACTrainer(env=eval_env,
                         policy=policy,
                         qf1=qf1,
                         qf2=qf2,
                         target_qf1=target_qf1,
                         target_qf2=target_qf2,
                         **variant['trainer_kwargs'])
    if variant['collection_mode'] == 'batch':
        expl_path_collector = MdpPathCollector(
            expl_env, policy, **variant['expl_path_collector_kwargs'])
        algorithm = TorchBatchRLAlgorithm(
            trainer=trainer,
            exploration_env=expl_env,
            evaluation_env=eval_env,
            exploration_data_collector=expl_path_collector,
            evaluation_data_collector=eval_path_collector,
            replay_buffer=replay_buffer,
            **variant['algo_kwargs'])
    elif variant['collection_mode'] == 'online':
        expl_path_collector = MdpStepCollector(
            expl_env, policy, **variant['expl_path_collector_kwargs'])
        algorithm = TorchOnlineRLAlgorithm(
            trainer=trainer,
            exploration_env=expl_env,
            evaluation_env=eval_env,
            exploration_data_collector=expl_path_collector,
            evaluation_data_collector=eval_path_collector,
            replay_buffer=replay_buffer,
            **variant['algo_kwargs'])
    algorithm.to(ptu.device)
    algorithm.train()
def experiment(variant):
    import multiworld
    multiworld.register_all_envs()
    env = gym.make('Image48SawyerReachXYEnv-v1')
    observation_key = 'image_proprio_observation'
    input_width, input_height = env.image_shape

    action_dim = int(np.prod(env.action_space.shape))
    cnn_params = variant['cnn_params']
    cnn_params.update(
        input_width=input_width,
        input_height=input_height,
        input_channels=3,
        added_fc_input_size=3,
        output_conv_channels=True,
        output_size=None,
    )
    if variant['shared_qf_conv']:
        qf_cnn = CNN(**cnn_params)
        qf1 = MlpQfWithObsProcessor(
            obs_processor=nn.Sequential(qf_cnn, Flatten()),
            output_size=1,
            input_size=action_dim + qf_cnn.conv_output_flat_size,
            **variant['qf_kwargs'])
        qf2 = MlpQfWithObsProcessor(
            obs_processor=nn.Sequential(qf_cnn, Flatten()),
            output_size=1,
            input_size=action_dim + qf_cnn.conv_output_flat_size,
            **variant['qf_kwargs'])
        target_qf_cnn = CNN(**cnn_params)
        target_qf1 = MlpQfWithObsProcessor(
            obs_processor=nn.Sequential(target_qf_cnn, Flatten()),
            output_size=1,
            input_size=action_dim + target_qf_cnn.conv_output_flat_size,
            **variant['qf_kwargs'])
        target_qf2 = MlpQfWithObsProcessor(
            obs_processor=nn.Sequential(target_qf_cnn, Flatten()),
            output_size=1,
            input_size=action_dim + target_qf_cnn.conv_output_flat_size,
            **variant['qf_kwargs'])
    else:
        qf1_cnn = CNN(**cnn_params)
        cnn_output_dim = qf1_cnn.conv_output_flat_size
        qf1 = MlpQfWithObsProcessor(obs_processor=nn.Sequential(
            qf1_cnn, Flatten()),
                                    output_size=1,
                                    input_size=action_dim + cnn_output_dim,
                                    **variant['qf_kwargs'])
        qf2 = MlpQfWithObsProcessor(obs_processor=nn.Sequential(
            CNN(**cnn_params), Flatten()),
                                    output_size=1,
                                    input_size=action_dim + cnn_output_dim,
                                    **variant['qf_kwargs'])
        target_qf1 = MlpQfWithObsProcessor(
            obs_processor=nn.Sequential(CNN(**cnn_params), Flatten()),
            output_size=1,
            input_size=action_dim + cnn_output_dim,
            **variant['qf_kwargs'])
        target_qf2 = MlpQfWithObsProcessor(
            obs_processor=nn.Sequential(CNN(**cnn_params), Flatten()),
            output_size=1,
            input_size=action_dim + cnn_output_dim,
            **variant['qf_kwargs'])
    policy_cnn = CNN(**cnn_params)
    policy = TanhGaussianPolicyAdapter(nn.Sequential(policy_cnn, Flatten()),
                                       policy_cnn.conv_output_flat_size,
                                       action_dim, **variant['policy_kwargs'])
    eval_env = expl_env = env

    eval_policy = MakeDeterministic(policy)
    eval_path_collector = ObsDictPathCollector(
        eval_env,
        eval_policy,
        observation_key=observation_key,
        **variant['eval_path_collector_kwargs'])
    replay_buffer = ObsDictReplayBuffer(
        variant['replay_buffer_size'],
        expl_env,
        observation_key=observation_key,
        **variant['replay_buffer_kwargs'],
    )
    trainer = SACTrainer(env=eval_env,
                         policy=policy,
                         qf1=qf1,
                         qf2=qf2,
                         target_qf1=target_qf1,
                         target_qf2=target_qf2,
                         **variant['trainer_kwargs'])
    if variant['collection_mode'] == 'batch':
        expl_path_collector = ObsDictPathCollector(
            expl_env,
            policy,
            observation_key=observation_key,
            **variant['expl_path_collector_kwargs'])
        algorithm = TorchBatchRLAlgorithm(
            trainer=trainer,
            exploration_env=expl_env,
            evaluation_env=eval_env,
            exploration_data_collector=expl_path_collector,
            evaluation_data_collector=eval_path_collector,
            replay_buffer=replay_buffer,
            **variant['algo_kwargs'])
    elif variant['collection_mode'] == 'online':
        expl_path_collector = ObsDictStepCollector(
            expl_env,
            policy,
            observation_key=observation_key,
            **variant['expl_path_collector_kwargs'])
        algorithm = TorchOnlineRLAlgorithm(
            trainer=trainer,
            exploration_env=expl_env,
            evaluation_env=eval_env,
            exploration_data_collector=expl_path_collector,
            evaluation_data_collector=eval_path_collector,
            replay_buffer=replay_buffer,
            **variant['algo_kwargs'])
    algorithm.to(ptu.device)
    algorithm.train()
Example #12
0
def HER_baseline_twin_sac_experiment(variant):
    import railrl.torch.pytorch_util as ptu
    from railrl.data_management.obs_dict_replay_buffer import \
        ObsDictRelabelingBuffer
    from railrl.exploration_strategies.base import (
        PolicyWrappedWithExplorationStrategy)
    from railrl.torch.her.her_twin_sac import HerTwinSAC
    from railrl.torch.sac.policies import TanhCNNGaussianPolicy
    from railrl.torch.networks import MergedCNN, CNN
    import torch
    from multiworld.core.image_env import ImageEnv
    from railrl.misc.asset_loader import load_local_or_remote_file

    init_camera = variant.get("init_camera", None)
    presample_goals = variant.get('presample_goals', False)
    presampled_goals_path = get_presampled_goals_path(
        variant.get('presampled_goals_path', None))

    if 'env_id' in variant:
        import gym
        import multiworld
        multiworld.register_all_envs()
        env = gym.make(variant['env_id'])
    else:
        env = variant["env_class"](**variant['env_kwargs'])
    image_env = ImageEnv(
        env,
        variant.get('imsize'),
        reward_type='image_sparse',
        init_camera=init_camera,
        transpose=True,
        normalize=True,
    )
    if presample_goals:
        if presampled_goals_path is None:
            image_env.non_presampled_goal_img_is_garbage = True
            presampled_goals = variant['generate_goal_dataset_fctn'](
                env=image_env, **variant['goal_generation_kwargs'])
        else:
            presampled_goals = load_local_or_remote_file(
                presampled_goals_path).item()
        del image_env
        env = ImageEnv(
            env,
            variant.get('imsize'),
            reward_type='image_distance',
            init_camera=init_camera,
            transpose=True,
            normalize=True,
            presampled_goals=presampled_goals,
        )
    else:
        env = image_env
    es = get_exploration_strategy(variant, env)

    observation_key = variant.get('observation_key', 'image_observation')
    desired_goal_key = variant.get('desired_goal_key', 'image_desired_goal')
    achieved_goal_key = desired_goal_key.replace("desired", "achieved")
    imsize = variant['imsize']
    action_dim = env.action_space.low.size
    qf1 = MergedCNN(input_width=imsize,
                    input_height=imsize,
                    output_size=1,
                    input_channels=3 * 2,
                    added_fc_input_size=action_dim,
                    **variant['cnn_params'])
    qf2 = MergedCNN(input_width=imsize,
                    input_height=imsize,
                    output_size=1,
                    input_channels=3 * 2,
                    added_fc_input_size=action_dim,
                    **variant['cnn_params'])

    policy = TanhCNNGaussianPolicy(
        input_width=imsize,
        input_height=imsize,
        added_fc_input_size=0,
        output_size=action_dim,
        input_channels=3 * 2,
        output_activation=torch.tanh,
        **variant['cnn_params'],
    )

    vf = CNN(input_width=imsize,
             input_height=imsize,
             output_size=1,
             input_channels=3 * 2,
             **variant['cnn_params'])
    target_vf = CNN(input_width=imsize,
                    input_height=imsize,
                    output_size=1,
                    input_channels=3 * 2,
                    **variant['cnn_params'])

    replay_buffer = ObsDictRelabelingBuffer(
        env=env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        achieved_goal_key=achieved_goal_key,
        **variant['replay_buffer_kwargs'])
    exploration_policy = PolicyWrappedWithExplorationStrategy(
        exploration_strategy=es,
        policy=policy,
    )
    algo_kwargs = variant['algo_kwargs']
    algo_kwargs['replay_buffer'] = replay_buffer
    base_kwargs = algo_kwargs['base_kwargs']
    base_kwargs['training_env'] = env
    base_kwargs['render'] = variant["render"]
    base_kwargs['render_during_eval'] = variant["render"]
    her_kwargs = algo_kwargs['her_kwargs']
    her_kwargs['observation_key'] = observation_key
    her_kwargs['desired_goal_key'] = desired_goal_key
    algorithm = HerTwinSAC(env,
                           qf1=qf1,
                           qf2=qf2,
                           vf=vf,
                           target_vf=target_vf,
                           policy=policy,
                           exploration_policy=exploration_policy,
                           **variant['algo_kwargs'])

    algorithm.to(ptu.device)
    algorithm.train()
def experiment(variant):
    expl_env = roboverse.make(variant['env'],
                              gui=False,
                              randomize=True,
                              observation_mode=variant['obs'],
                              reward_type='shaped',
                              transpose_image=True)
    eval_env = expl_env
    img_width, img_height = eval_env.image_shape
    num_channels = 3
    action_dim = int(np.prod(eval_env.action_space.shape))
    # obs_dim = 11

    cnn_params = variant['cnn_params']
    cnn_params.update(
        input_width=img_width,
        input_height=img_height,
        input_channels=num_channels,
        added_fc_input_size=0,
        output_conv_channels=True,
        output_size=None,
    )

    qf_cnn = CNN(**cnn_params)
    qf_obs_processor = nn.Sequential(
        qf_cnn,
        Flatten(),
    )

    qf_kwargs = copy.deepcopy(variant['qf_kwargs'])
    qf_kwargs['obs_processor'] = qf_obs_processor
    qf_kwargs['output_size'] = 1
    qf_kwargs['input_size'] = (action_dim + qf_cnn.conv_output_flat_size)
    qf1 = MlpQfWithObsProcessor(**qf_kwargs)
    qf2 = MlpQfWithObsProcessor(**qf_kwargs)

    target_qf_cnn = CNN(**cnn_params)
    target_qf_obs_processor = nn.Sequential(
        target_qf_cnn,
        Flatten(),
    )

    target_qf_kwargs = copy.deepcopy(variant['qf_kwargs'])
    target_qf_kwargs['obs_processor'] = target_qf_obs_processor
    target_qf_kwargs['output_size'] = 1
    target_qf_kwargs['input_size'] = (action_dim +
                                      target_qf_cnn.conv_output_flat_size)

    target_qf1 = MlpQfWithObsProcessor(**target_qf_kwargs)
    target_qf2 = MlpQfWithObsProcessor(**target_qf_kwargs)

    action_dim = int(np.prod(eval_env.action_space.shape))
    policy_cnn = CNN(**cnn_params)
    policy_obs_processor = nn.Sequential(
        policy_cnn,
        Flatten(),
    )
    policy = TanhGaussianPolicyAdapter(policy_obs_processor,
                                       policy_cnn.conv_output_flat_size,
                                       action_dim, **variant['policy_kwargs'])

    eval_policy = MakeDeterministic(policy)
    observation_key = 'image'

    eval_path_collector = ObsDictPathCollector(
        eval_env,
        eval_policy,
        observation_key=observation_key,
        **variant['eval_path_collector_kwargs'])

    expl_path_collector = CustomObsDictPathCollector(
        expl_env,
        observation_key=observation_key,
    )

    with open(variant['buffer'], 'rb') as f:
        replay_buffer = pickle.load(f)

    trainer = SACTrainer(env=eval_env,
                         policy=policy,
                         qf1=qf1,
                         qf2=qf2,
                         target_qf1=target_qf1,
                         target_qf2=target_qf2,
                         behavior_policy=None,
                         **variant['trainer_kwargs'])
    algorithm = TorchBatchRLAlgorithm(
        trainer=trainer,
        exploration_env=expl_env,
        evaluation_env=eval_env,
        exploration_data_collector=expl_path_collector,
        evaluation_data_collector=eval_path_collector,
        replay_buffer=replay_buffer,
        eval_both=True,
        batch_rl=variant['load_buffer'],
        **variant['algorithm_kwargs'])

    video_func = VideoSaveFunctionBullet(variant)
    algorithm.post_train_funcs.append(video_func)

    algorithm.to(ptu.device)
    algorithm.train()
def experiment(variant):

    expl_env = roboverse.make(variant['env'],
                              gui=False,
                              randomize=variant['randomize_env'],
                              observation_mode=variant['obs'],
                              reward_type='shaped',
                              transpose_image=True)

    if variant['obs'] == 'pixels_debug':
        robot_state_dims = 11
    elif variant['obs'] == 'pixels':
        robot_state_dims = 4
    else:
        raise NotImplementedError

    expl_env = FlatEnv(expl_env,
                       use_robot_state=variant['use_robot_state'],
                       robot_state_dims=robot_state_dims)
    eval_env = expl_env

    img_width, img_height = eval_env.image_shape
    num_channels = 3

    action_dim = int(np.prod(eval_env.action_space.shape))
    cnn_params = variant['cnn_params']
    cnn_params.update(
        input_width=img_width,
        input_height=img_height,
        input_channels=num_channels,
    )
    if variant['use_robot_state']:
        cnn_params.update(
            added_fc_input_size=robot_state_dims,
            output_conv_channels=False,
            hidden_sizes=[400, 400],
            output_size=200,
        )
    else:
        cnn_params.update(
            added_fc_input_size=0,
            output_conv_channels=True,
            output_size=None,
        )
    qf_cnn = CNN(**cnn_params)

    if variant['use_robot_state']:
        qf_obs_processor = qf_cnn
    else:
        qf_obs_processor = nn.Sequential(
            qf_cnn,
            Flatten(),
        )

    qf_kwargs = copy.deepcopy(variant['qf_kwargs'])
    qf_kwargs['obs_processor'] = qf_obs_processor
    qf_kwargs['output_size'] = 1

    if variant['use_robot_state']:
        qf_kwargs['input_size'] = (action_dim + qf_cnn.output_size)
    else:
        qf_kwargs['input_size'] = (action_dim + qf_cnn.conv_output_flat_size)

    qf1 = MlpQfWithObsProcessor(**qf_kwargs)
    qf2 = MlpQfWithObsProcessor(**qf_kwargs)

    target_qf_cnn = CNN(**cnn_params)
    if variant['use_robot_state']:
        target_qf_obs_processor = target_qf_cnn
    else:
        target_qf_obs_processor = nn.Sequential(
            target_qf_cnn,
            Flatten(),
        )

    target_qf_kwargs = copy.deepcopy(variant['qf_kwargs'])
    target_qf_kwargs['obs_processor'] = target_qf_obs_processor
    target_qf_kwargs['output_size'] = 1

    if variant['use_robot_state']:
        target_qf_kwargs['input_size'] = (action_dim +
                                          target_qf_cnn.output_size)
    else:
        target_qf_kwargs['input_size'] = (action_dim +
                                          target_qf_cnn.conv_output_flat_size)

    target_qf1 = MlpQfWithObsProcessor(**target_qf_kwargs)
    target_qf2 = MlpQfWithObsProcessor(**target_qf_kwargs)

    action_dim = int(np.prod(eval_env.action_space.shape))
    policy_cnn = CNN(**cnn_params)
    if variant['use_robot_state']:
        policy_obs_processor = policy_cnn
    else:
        policy_obs_processor = nn.Sequential(
            policy_cnn,
            Flatten(),
        )

    if variant['use_robot_state']:
        policy = TanhGaussianPolicyAdapter(policy_obs_processor,
                                           policy_cnn.output_size, action_dim,
                                           **variant['policy_kwargs'])
    else:
        policy = TanhGaussianPolicyAdapter(policy_obs_processor,
                                           policy_cnn.conv_output_flat_size,
                                           action_dim,
                                           **variant['policy_kwargs'])

    eval_policy = MakeDeterministic(policy)
    eval_path_collector = MdpPathCollector(
        eval_env, eval_policy, **variant['eval_path_collector_kwargs'])
    replay_buffer = EnvReplayBuffer(
        variant['replay_buffer_size'],
        expl_env,
    )
    trainer = SACTrainer(env=eval_env,
                         policy=policy,
                         qf1=qf1,
                         qf2=qf2,
                         target_qf1=target_qf1,
                         target_qf2=target_qf2,
                         **variant['trainer_kwargs'])
    if variant['collection_mode'] == 'batch':
        expl_path_collector = MdpPathCollector(
            expl_env, policy, **variant['expl_path_collector_kwargs'])
        algorithm = TorchBatchRLAlgorithm(
            trainer=trainer,
            exploration_env=expl_env,
            evaluation_env=eval_env,
            exploration_data_collector=expl_path_collector,
            evaluation_data_collector=eval_path_collector,
            replay_buffer=replay_buffer,
            **variant['algo_kwargs'])
    elif variant['collection_mode'] == 'online':
        expl_path_collector = MdpStepCollector(
            expl_env, policy, **variant['expl_path_collector_kwargs'])
        algorithm = TorchOnlineRLAlgorithm(
            trainer=trainer,
            exploration_env=expl_env,
            evaluation_env=eval_env,
            exploration_data_collector=expl_path_collector,
            evaluation_data_collector=eval_path_collector,
            replay_buffer=replay_buffer,
            **variant['algo_kwargs'])
    else:
        raise NotImplementedError

    video_func = VideoSaveFunctionBullet(variant)
    algorithm.post_train_funcs.append(video_func)

    algorithm.to(ptu.device)
    algorithm.train()
def experiment(variant):

    expl_env = FlatEnv(PointmassBaseEnv(observation_mode='pixels',
                                        transpose_image=True),
                       use_robot_state=False)

    eval_env = expl_env

    img_width, img_height = (48, 48)
    num_channels = 3

    action_dim = int(np.prod(eval_env.action_space.shape))
    cnn_params = variant['cnn_params']
    cnn_params.update(
        input_width=img_width,
        input_height=img_height,
        input_channels=num_channels,
        added_fc_input_size=4,
        output_conv_channels=True,
        output_size=None,
    )

    qf_cnn = CNN(**cnn_params)
    qf_obs_processor = nn.Sequential(
        qf_cnn,
        Flatten(),
    )

    qf_kwargs = copy.deepcopy(variant['qf_kwargs'])
    qf_kwargs['obs_processor'] = qf_obs_processor
    qf_kwargs['output_size'] = 1
    qf_kwargs['input_size'] = (action_dim + qf_cnn.conv_output_flat_size)
    qf1 = MlpQfWithObsProcessor(**qf_kwargs)
    qf2 = MlpQfWithObsProcessor(**qf_kwargs)

    target_qf_cnn = CNN(**cnn_params)
    target_qf_obs_processor = nn.Sequential(
        target_qf_cnn,
        Flatten(),
    )
    target_qf_kwargs = copy.deepcopy(variant['qf_kwargs'])
    target_qf_kwargs['obs_processor'] = target_qf_obs_processor
    target_qf_kwargs['output_size'] = 1
    target_qf_kwargs['input_size'] = (action_dim +
                                      target_qf_cnn.conv_output_flat_size)
    target_qf1 = MlpQfWithObsProcessor(**target_qf_kwargs)
    target_qf2 = MlpQfWithObsProcessor(**target_qf_kwargs)

    action_dim = int(np.prod(eval_env.action_space.shape))
    policy_cnn = CNN(**cnn_params)
    policy_obs_processor = nn.Sequential(
        policy_cnn,
        Flatten(),
    )
    policy = TanhGaussianPolicyAdapter(policy_obs_processor,
                                       policy_cnn.conv_output_flat_size,
                                       action_dim, **variant['policy_kwargs'])

    eval_policy = MakeDeterministic(policy)
    eval_path_collector = MdpPathCollector(
        eval_env, eval_policy, **variant['eval_path_collector_kwargs'])
    replay_buffer = EnvReplayBuffer(
        variant['replay_buffer_size'],
        expl_env,
    )
    trainer = SACTrainer(env=eval_env,
                         policy=policy,
                         qf1=qf1,
                         qf2=qf2,
                         target_qf1=target_qf1,
                         target_qf2=target_qf2,
                         **variant['trainer_kwargs'])
    if variant['collection_mode'] == 'batch':
        expl_path_collector = MdpPathCollector(
            expl_env, policy, **variant['expl_path_collector_kwargs'])
        algorithm = TorchBatchRLAlgorithm(
            trainer=trainer,
            exploration_env=expl_env,
            evaluation_env=eval_env,
            exploration_data_collector=expl_path_collector,
            evaluation_data_collector=eval_path_collector,
            replay_buffer=replay_buffer,
            **variant['algo_kwargs'])
    elif variant['collection_mode'] == 'online':
        expl_path_collector = MdpStepCollector(
            expl_env, policy, **variant['expl_path_collector_kwargs'])
        algorithm = TorchOnlineRLAlgorithm(
            trainer=trainer,
            exploration_env=expl_env,
            evaluation_env=eval_env,
            exploration_data_collector=expl_path_collector,
            evaluation_data_collector=eval_path_collector,
            replay_buffer=replay_buffer,
            **variant['algo_kwargs'])
    algorithm.to(ptu.device)
    algorithm.train()
Example #16
0
def experiment(variant):
    expl_env = gym.make('carla-lane-dict-v0')

    eval_env = expl_env
    num_channels, img_width, img_height = eval_env.image_shape
    num_channels = 3

    action_dim = int(np.prod(eval_env.action_space.shape))
    cnn_params = variant['cnn_params']
    cnn_params.update(
        input_width=img_width,
        input_height=img_height,
        input_channels=num_channels,
        added_fc_input_size=0,
        output_conv_channels=True,
        output_size=None,
    )

    qf_cnn = CNN(**cnn_params)
    qf_obs_processor = nn.Sequential(
        qf_cnn,
        Flatten(),
    )

    qf_kwargs = copy.deepcopy(variant['qf_kwargs'])
    qf_kwargs['obs_processor'] = qf_obs_processor
    qf_kwargs['output_size'] = 1
    qf_kwargs['input_size'] = (
            action_dim + qf_cnn.conv_output_flat_size
    )
    qf1 = MlpQfWithObsProcessor(**qf_kwargs)
    qf2 = MlpQfWithObsProcessor(**qf_kwargs)

    target_qf_cnn = CNN(**cnn_params)
    target_qf_obs_processor = nn.Sequential(
        target_qf_cnn,
        Flatten(),
    )

    target_qf_kwargs = copy.deepcopy(variant['qf_kwargs'])
    target_qf_kwargs['obs_processor'] = target_qf_obs_processor
    target_qf_kwargs['output_size'] = 1
    target_qf_kwargs['input_size'] = (
            action_dim + target_qf_cnn.conv_output_flat_size
    )

    target_qf1 = MlpQfWithObsProcessor(**target_qf_kwargs)
    target_qf2 = MlpQfWithObsProcessor(**target_qf_kwargs)

    action_dim = int(np.prod(eval_env.action_space.shape))
    policy_cnn = CNN(**cnn_params)
    policy_obs_processor = nn.Sequential(
        policy_cnn,
        Flatten(),
    )
    policy = TanhGaussianPolicyAdapter(
        policy_obs_processor,
        policy_cnn.conv_output_flat_size,
        action_dim,
        **variant['policy_kwargs']
    )

    cnn_vae_params = variant['cnn_vae_params']
    cnn_vae_params['conv_args'].update(
        input_width=img_width,
        input_height=img_height,
        input_channels=num_channels,
    )
    vae_policy = ConvVAEPolicy(
        representation_size=cnn_vae_params['representation_size'],
        architecture=cnn_vae_params,
        action_dim=action_dim,
        input_channels=3,
        imsize=img_width,
    )

    observation_key = 'image'
    eval_path_collector = CustomObsDictPathCollector(
        eval_env,
        observation_key=observation_key,
        **variant['eval_path_collector_kwargs']
    )

    vae_eval_path_collector = CustomObsDictPathCollector(
        eval_env,
        # eval_policy,
        observation_key=observation_key,
        **variant['eval_path_collector_kwargs']
    )

    #with open(variant['buffer'], 'rb') as f:
    #    replay_buffer = pickle.load(f)
    observation_key = 'image'
    replay_buffer = ObsDictReplayBuffer(
        variant['replay_buffer_size'],
        expl_env,
        observation_key=observation_key,
    )
    load_hdf5(expl_env, replay_buffer)


    trainer = BEARTrainer(
        env=eval_env,
        policy=policy,
        qf1=qf1,
        qf2=qf2,
        target_qf1=target_qf1,
        target_qf2=target_qf2,
        vae=vae_policy,
        **variant['trainer_kwargs']
    )

    expl_path_collector = ObsDictPathCollector(
        expl_env,
        policy,
        observation_key=observation_key,
        **variant['expl_path_collector_kwargs']
    )
    algorithm = TorchBatchRLAlgorithm(
        trainer=trainer,
        exploration_env=expl_env,
        evaluation_env=eval_env,
        exploration_data_collector=expl_path_collector,
        evaluation_data_collector=eval_path_collector,
        vae_evaluation_data_collector=vae_eval_path_collector,
        replay_buffer=replay_buffer,
        q_learning_alg=True,
        batch_rl=variant['batch_rl'],
        **variant['algo_kwargs']
    )

    video_func = VideoSaveFunctionBullet(variant)
    # dump_buffer_func = BufferSaveFunction(variant)

    algorithm.post_train_funcs.append(video_func)
    # algorithm.post_train_funcs.append(dump_buffer_func)

    algorithm.to(ptu.device)
    algorithm.train()
def experiment(variant):

    env_params = dict(
        block_random=0.3,
        camera_random=0,
        simple_observations=False,
        continuous=True,
        remove_height_hack=True,
        render_mode="DIRECT",
        # render_mode="GUI",
        num_objects=5,
        max_num_training_models=900,
        target=False,
        test=False,
    )
    expl_env = FlatEnv(KukaGraspingProceduralEnv(**env_params))
    eval_env = expl_env
    img_width, img_height = eval_env.image_shape
    num_channels = 3

    action_dim = int(np.prod(eval_env.action_space.shape))
    cnn_params = variant['cnn_params']
    cnn_params.update(
        input_width=img_width,
        input_height=img_height,
        input_channels=num_channels,
        added_fc_input_size=0,
        output_conv_channels=True,
        output_size=None,
    )

    qf_cnn = CNN(**cnn_params)
    qf_obs_processor = nn.Sequential(
        qf_cnn,
        Flatten(),
    )

    qf_kwargs = copy.deepcopy(variant['qf_kwargs'])
    qf_kwargs['obs_processor'] = qf_obs_processor
    qf_kwargs['output_size'] = 1
    qf_kwargs['input_size'] = (action_dim + qf_cnn.conv_output_flat_size)
    qf1 = MlpQfWithObsProcessor(**qf_kwargs)
    qf2 = MlpQfWithObsProcessor(**qf_kwargs)

    target_qf_cnn = CNN(**cnn_params)
    target_qf_obs_processor = nn.Sequential(
        target_qf_cnn,
        Flatten(),
    )

    target_qf_kwargs = copy.deepcopy(variant['qf_kwargs'])
    target_qf_kwargs['obs_processor'] = target_qf_obs_processor
    target_qf_kwargs['output_size'] = 1
    target_qf_kwargs['input_size'] = (action_dim +
                                      target_qf_cnn.conv_output_flat_size)

    target_qf1 = MlpQfWithObsProcessor(**target_qf_kwargs)
    target_qf2 = MlpQfWithObsProcessor(**target_qf_kwargs)

    action_dim = int(np.prod(eval_env.action_space.shape))
    policy_cnn = CNN(**cnn_params)
    policy_obs_processor = nn.Sequential(
        policy_cnn,
        Flatten(),
    )
    policy = TanhGaussianPolicyAdapter(policy_obs_processor,
                                       policy_cnn.conv_output_flat_size,
                                       action_dim, **variant['policy_kwargs'])

    observation_key = 'image'
    eval_policy = MakeDeterministic(policy)
    eval_path_collector = ObsDictPathCollector(
        eval_env,
        eval_policy,
        observation_key=observation_key,
        **variant['eval_path_collector_kwargs'])
    replay_buffer = ObsDictReplayBuffer(
        variant['replay_buffer_size'],
        expl_env,
        observation_key=observation_key,
    )

    trainer = SACTrainer(env=eval_env,
                         policy=policy,
                         qf1=qf1,
                         qf2=qf2,
                         target_qf1=target_qf1,
                         target_qf2=target_qf2,
                         **variant['trainer_kwargs'])
    if variant['collection_mode'] == 'batch':
        expl_path_collector = ObsDictPathCollector(
            expl_env,
            policy,
            observation_key=observation_key,
            **variant['expl_path_collector_kwargs'])
        algorithm = TorchBatchRLAlgorithm(
            trainer=trainer,
            exploration_env=expl_env,
            evaluation_env=eval_env,
            exploration_data_collector=expl_path_collector,
            evaluation_data_collector=eval_path_collector,
            replay_buffer=replay_buffer,
            **variant['algo_kwargs'])
    elif variant['collection_mode'] == 'online':
        expl_path_collector = ObsDictStepCollector(
            expl_env,
            policy,
            observation_key=observation_key,
            **variant['expl_path_collector_kwargs'])
        algorithm = TorchOnlineRLAlgorithm(
            trainer=trainer,
            exploration_env=expl_env,
            evaluation_env=eval_env,
            exploration_data_collector=expl_path_collector,
            evaluation_data_collector=eval_path_collector,
            replay_buffer=replay_buffer,
            **variant['algo_kwargs'])
    else:
        raise NotImplementedError

    video_func = VideoSaveFunctionBullet(variant)
    algorithm.post_train_funcs.append(video_func)

    # dump_buffer_func = BufferSaveFunction(variant)
    # algorithm.post_train_funcs.append(dump_buffer_func)

    algorithm.to(ptu.device)
    algorithm.train()