def weixin_konwledges_reply(age_by_day, number, msg, weatherinfo): age = int(age_by_day) knowls_all = Knowledge.objects.using('wjbbserverdb').filter(max__gte = age, min__lte = age) knowls = None count = knowls_all.count() if(number >= count): knowls = knowls_all number = count else: knowls = random.sample(list(knowls_all), number) picindexes = random.sample((0,1,2,3,4,5,6,7,8,9), number) for i in range(0, number): knowls[i].picurl = 'http://wjbb.cloudapp.net:8001/pic/'+str(picindexes[i])+'.jpg' knowls[i].url = 'http://wjbb.cloudapp.net/weixin/knowledge/%d/'%(knowls[i].id) context = {} context['knowls'] = knowls context['fromUser'] = msg['ToUserName'] context['toUser'] = msg['FromUserName'] context['number'] = str(number+1) context['create_time'] = str(int(time.time())) context["weather_info"] = weatherinfo context['temperature'] = weatherinfo['temperature'] context['wind'] = weatherinfo['wind'] context['windstrong'] = weatherinfo['windstrong'] context['detailinfo'] = weatherinfo['detailinfo'] context['weather_picurl'] = 'http://wjbb.cloudapp.net:8001/pic/'+str(picindexes[0])+'.jpg' context['weather_url'] = 'http://wjbb.cloudapp.net/weixin/knowledge/%d/'%(knowls[0].id) print("weather info", weatherinfo) t = get_template('weixin/knowledges_msg.xml') return t.render(Context(context))
def __init__(self): self.commandGiven = False self.map = lab10_map.Map("lab10.map") print("distance from wall = ", self.map.closest_distance([0.5, 0.5], math.pi*0.0)) self.sigma = 0.05 self.distanceVariance = 0.1 #math.sqrt(0.05) #distance variance is 5 cm self.directionVariance = 0.1 #math.sqrt(0.05) #direction variance is 5 degrees self.scale = 100 self.randomNumbers = random.sample(range(300), 200) self.randomTheta = random.sample(range(360), 200) self.numOfParticles = 10 # for i in range(0, self.numOfParticles, 1): # self.randomTheta[i] = math.radians(self.randomTheta[i]) self.particles = [] self.particleWeights = [] for i in range(0, self.numOfParticles*2, 2): particle = Particle() particle.x = self.randomNumbers[i]/100 particle.y = self.randomNumbers[i+1]/100 particle.theta = 0 #math.radians(self.randomTheta[i]) # print("theta = ", particle.theta) # tuple = (, self.randomNumbers[i + 1] / 100, 0.1, self.randomTheta[i]) self.particles.append(particle)
def ciaoruozi(): print("@" + username + ": /ciaoruozi") # Ciao Ruozi. if username.lower() == "ruozir": # Manda un messaggio casuale tra quelli nella lista chosen_msg = random.sample(["Ciao me!", "Ciao ciao ciao!", "1 ciaoruozi = 1000€ per me", "Ruozi si dice: #CiaoRuozi", "Ciao eh me!", "Ehi me, ma ciao!", "Ma ciao me stesso!", "Me me me! Ciao!"], 1)[0] telegram.sendmessage(chosen_msg, sentin, source) else: # Manda un messaggio casuale tra quelli nella lista chosen_msg = random.sample(["Ciao Ruozi!", "Ciao ciao ciao!", "1 ciaoruozi = 1 prayer", "La RYG dice: #CiaoRuozi", "Ciao eh Ruozi!", "Ehi Ruozi, ma ciao!", "Ma ciao Ruozi!", "Ruozi ruozi ruozi! Ciao!"], 1)[0] telegram.sendmessage(chosen_msg, sentin, source)
def Fitch(rooted_tree): # using of Fitch algorithm # traverse Tree in post-order for node in rooted_tree.traverse('postorder'): if not node.is_leaf(): children = node.get_children() intersect = (children[0].data['split']).intersection(children[1].data['split']) if len(intersect) == 0: node.data['split'] = (children[0].data['split']).union(children[1].data['split']) else: node.data['split'] = intersect # traverse top-down for node in rooted_tree.traverse('levelorder'): if node.is_root(): # for the root # if the root has 2 candidatnode.add_features()e, randomly choose 1, and get the numeric value node.data['split'] = (random.sample(node.data['split'],1))[0] else: # for children node, first check the data from the ancestor ancestors = node.get_ancestors() # get the list of ancestor data = ancestors[0].data['split'] # get the data from the parent if data in node.data['split']:# check if the node.data has value equal to its parent data node.data['split'] =data else: node.data['split'] = (random.sample(node.data['split'],1))[0] return rooted_tree
def convert(snippet, phrase): class_names = [w.capitalize() for w in random.sample(WORDS, snippet.count("%%%"))] other_names = random.sample(WORDS, snippet.count("***")) results = [] param_names = [] for i in range(0, snippet.count("@@@")): param_count = random.randint(1,3) param_names.append(', '.join(random.sample(WORDS, param_count))) for sentence in snippet, phrase: result = sentence[:] for word in class_names: result = result.replace("%%%", word, 1) for word in other_names: result = result.replace("***", word, 1) for word in param_names: result = result.replace("@@@", word, 1) results.append(result) return results
def generateTrials(myDict, nTestTrials): ''' generates a list of trials to write to csv file supply 3 columns to be factorially combined myDict = {'contrast': [1.0, 0.75, 0.5, 0.25], 'orientation':[225, 315], 'probeMatch':[1, 0], 'correctKey':[1]} ''' columnHeaders = myDict.keys() trialList = data.createFactorialTrialList(myDict) for item in trialList: if item['probeMatch'] == 1: item['correctKey'] = expInfo['sameKey'] else: item['correctKey'] =expInfo['differentKey'] # write trial list for experiment loop: if expInfo['experimentType']=='practise': trialList = rand.sample(trialList, nTestTrials) with open('mainTrials.csv', 'wb') as mainTrialsFile: writer = csv.writer(mainTrialsFile, dialect='excel') writer.writerow(columnHeaders) for row in trialList: writer.writerow(row.values()) if expInfo['experimentType']=='practise': # generate trial list for practise loop: practiseTrialList = rand.sample(trialList, nTestTrials) # write trial list for practise loop: with open('practiseTrials.csv', 'wb') as practiseTrialsFile: writer = csv.writer(practiseTrialsFile, dialect='excel') writer.writerow(columnHeaders) for row in practiseTrialList: writer.writerow(row.values())
def convert(snippet, phrase): #snippet = question, phrase = answer class_names = [w.capitalize() for w in random.sample(WORDS, snippet.count("%%%"))] other_names = random.sample(WORDS, snippet.count("***")) results = [] param_names = [] for i in range(0, snippet.count("@@@")): param_count = random.randint(1,3) param_names.append(', '.join(random.sample(WORDS, param_count))) for sentence in snippet, phrase: # copy sentence in result result = sentence[:] # fake class names for word in class_names: result = result.replace("%%%", word, 1) # fake other names for word in other_names: result = result.replace("***", word, 1) # fake parameter lists for word in param_names: result = result.replace("@@@", word, 1) results.append(result) return results
def repaint2(self, event): """ Period. """ s = float(random.sample(range(0,5), 1)[0]) d = float(random.sample(range(1,20), 1)[0])/10. self.GetTopLevelParent().GetStatusBar().SetStatusText('New period: %f,%f'%(s,s+d)) self.t1.SetTime(s,s+d) self.t2.SetTime(s,s+d)
def generateRandomInices(r, c, p, t): l = [] while len(l) < p: randomIndex = (random.sample(range(r),1)[0], random.sample(range(c),1)[0]) if randomIndex not in t and randomIndex not in l: l += [randomIndex] return l
def create_sample_MAS_instance(node_count=100, optimum_lower_bound=0.8, density=0.4): """ Creates a directed graph, subject to the constraints: - Some solution must contain at at least (optimum_lower_bound)% of the edges. - The graph has density (density) """ # Create directed graph on nodes 1,...,node_count graph = networkx.DiGraph() graph.add_nodes_from(xrange(1, node_count+1)) # Generate all possible directed edges, forward and backward possible_forward_edges = [(u,v) for u in graph.nodes_iter() for v in graph.nodes_iter() if u < v] possible_backward_edges = [(u,v) for u in graph.nodes_iter() for v in graph.nodes_iter() if u > v] # Compute balance of forward and backward edges edge_count = density * node_count * (node_count - 1) / 2 # Sample subsets of forward and backward edges chosen_forward_edges = random.sample(possible_forward_edges, int(optimum_lower_bound * edge_count)) chosen_backward_edges = random.sample(possible_backward_edges, int( (1 - optimum_lower_bound) * edge_count )) graph.add_edges_from(chosen_forward_edges) graph.add_edges_from(chosen_backward_edges) return permute_graph(graph)
def disturb(g,cl): ng=g.copy() ng.remove_edges_from(ng.edges()) for i in range(len(cl)-1):#连接簇之间不变的线 j=i+1 while j<len(cl): for x in itertools.product(cl[i],cl[j]):#簇之间两两(cl[i],cl[j])笛卡尔积 if g.has_edge(x[0],x[1]): ng.add_edge(x[0],x[1]) j+=1 sub=[] for i in range(len(cl)):#打乱簇内线 sub=g.subgraph(cl[i]) edges=sub.edges() numOfe=sub.number_of_edges() sub.remove_edges_from(edges) setE=[] tupleE=[] for k in range(numOfe):#生成numOfe条线 l=set(random.sample(cl[i],2))#随机生成cl[i]内两个数,并生成集合,因为集合无序,容易判断该两个数是否已经生成了 while l in setE: l=set(random.sample(cl[i],2)) setE.append(l) for item in setE:#集合变元组,用来添加边 tupleE.append(tuple(item)) ng.add_edges_from(tupleE) return ng
def cpl_2_change(self): """Change the playlist with random deletions, additions and reordering.""" p_id = self.playlists['playlist to change'][-1] tracks = self.api.get_playlist_songs(p_id) #Apply random modifications. delete, add_dupe, add_blank, reorder = [random.choice([True, False]) for i in xrange(4)] if tracks and delete: log.debug("deleting tracks") track_is = range(len(tracks)) #Select a random number of indices to delete. del_is = set(random.sample(track_is, random.choice(track_is))) tracks = [track for i, track in enumerate(tracks) if not i in del_is] if add_dupe: log.debug("adding dupe tracks from same playlist") tracks.extend(random.sample(tracks, random.randrange(len(tracks)))) if add_blank: log.debug("adding random tracks with no eid") tracks.extend(random.sample(self.library, random.randrange(len(tracks)))) if reorder: log.debug("shuffling tracks") random.shuffle(tracks) self.api.change_playlist(p_id, tracks) server_tracks = self.api.get_playlist_songs(p_id) self.assertEqual(len(tracks), len(server_tracks)) for local_t, server_t in zip(tracks, server_tracks): self.assertEqual(local_t['id'], server_t['id'])
def set_list_prob(dirr): #2.2.(1) line_1 = range(1,10001) if dirr[1] == 0: list_prob_1 = [] else: list_prob_1 = random.sample(line_1, dirr[1]) for i in list_prob_1: line_1.remove(i) if dirr[2] == 0: list_prob_2 = [] else: list_prob_2 = random.sample(line_1, dirr[2]) for i in list_prob_2: line_1.remove(i) if dirr[3] == 0: list_prob_3 = [] else: list_prob_3 = random.sample(line_1, dirr[3]) for i in list_prob_3: line_1.remove(i) if dirr[4] == 0: list_prob_4 = [] else: list_prob_4 = random.sample(line_1, dirr[4]) for i in list_prob_4: line_1.remove(i) list_prob_0 = line_1 return list_prob_0,list_prob_1,list_prob_2,list_prob_3,list_prob_4
def numberFactsLikeThis(klass, nf, rseed=None): # tolerances=[0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1.0, 2.5, 5.0, 10, 25, 50, 100] if rseed != None: seed(rseed) tolerances=[1.0, 2.5, 5.0, 10, 25, 50, 100] for tolerance in tolerances: ce=closeEnoughNumberFact(klass, nf.magnitude, nf.scale, tolerance, nf.measure) ce.remove(nf) candidates = [] for nf_a in ce: duplicate = False for nf_b in candidates: if nf_b.value == nf_a.value: duplicate = True break if not(duplicate): candidates.append(nf_a) if len(candidates)>=4: bestTolerance = tolerance bestComparisons = sample(candidates[1:-1],2) bestComparisons.append(candidates[0]) bestComparisons.append(candidates[-1]) bestComparisons = sample(bestComparisons,4) break bestTolerance = tolerance bestComparisons = sample(candidates,len(candidates)) score = round(1*log10(bestTolerance/1000)**2)*(len(bestComparisons)-1) return bestComparisons, bestTolerance, score
def doge(phenny,input): text = input.groups() if not text[1]: phenny.reply(' no word such fail wow bad say') return syn = get_from_thesaurus(text[1]) if not syn: phenny.reply(' no word such fail wow bad say') return syn = [(x.split())[0] for x in syn] syn = set(syn) n = min([random.randint(3,6), len(syn)]) dog = random.sample(shibe,n) ss = random.sample(syn,n) out = [] wow = 0 for i in range(0,n): sp = [' ' for j in range(0,random.randint(5,20))] if not wow and random.randint(0,1): out.append(''.join(sp)+'wow') wow = 1 i = i - 1 else: out.append(''.join(sp)+dog[i]+ss[i]) phenny.reply(' '.join(out))
def convert(snippet, phrase): # input:key&value from PHRASES class_names = [w.capitalize() for w in random.sample(WORDS, snippet.count("###"))] other_names = random.sample(WORDS, snippet.count("***")) # random.sample:get counted number on WORDS. results = [] param_names = [] for i in range(0, snippet.count("@@@")): param_count = random.randint(1,3) param_names.append(', '.join(random.sample(WORDS, param_count))) for sentence in snippet, phrase: result = sentence[:] for word in class_names: result = result.replace("###", word, 1) for word in other_names: result = result.replace("***", word, 1) for word in param_names: result = result.replace("@@@", word, 1) results.append(result) return results
def change_to_Random_Dir(self): self.logger.debug("Current DIR: %s" % self.client.pwd()) level1_dirs = [] for file_name in self.client.nlst(): try: self.client.cwd('/' + file_name) level1_dirs.append(file_name) self.logger.debug("Directory [L-1]: %s" % file_name) except ftplib.error_perm as detail: self.logger.debug("It's probably not a directory [L-1]: %s : %s" % (file_name, detail)) self.logger.debug("Number of L1-Dirs: %i" % len(level1_dirs)) randomly_sampled_L1_dir = random.sample(level1_dirs, 1)[0] self.client.cwd('/' + randomly_sampled_L1_dir) self.logger.debug("Current Level-1 DIR selected: %s" % self.client.pwd()) level2_dirs = [] for file_name_l2 in self.client.nlst(): try: self.client.cwd('/' + randomly_sampled_L1_dir + '/' +file_name_l2) level2_dirs.append(file_name_l2) self.logger.debug("Directory [L-2]: %s" % file_name_l2) except ftplib.error_perm as detail: self.logger.debug("It's probably not a directory [L-2]: %s : %s" % (file_name_l2, detail)) self.logger.debug("Number of L2-Dirs: %i" % len(level2_dirs)) rand_L2_dir = random.sample(level2_dirs, 1)[0] self.client.cwd('/' + randomly_sampled_L1_dir + '/' + rand_L2_dir) self.logger.debug("Current Level-2 DIR selected: %s" % self.client.pwd()) return self.client.pwd() + '/'
def name(): colors = ['Red', 'Orange', 'Yellow', 'Green', 'Blue', 'Indigo', 'Violet'] shapes = ['Triangle', 'Square', 'Pentagon', 'Hexagon', 'Septagon', 'Octagon'] return ('%s %s #%d' % (''.join(random.sample(colors, 1)), ''.join(random.sample(shapes, 1)), random.randint(0, 255)))
def get_fake_cdr(): cdr = dict() cdr['posting_time'] = str(datetime.datetime.now()) cdr['order_time'] = str(datetime.datetime.now()) cdr['call_flow'] = "[(324, '2013-09-09 00:00:07.421090'), (324, '2013-09-09 00:00:07.431099', 0),(314, '2013-09-09 00:00:07.432024'), (314, '2013-09-09 00:00:07.472149', 0),(300, '2013-09-09 00:00:07.472315'), (302, '2013-09-09 00:00:16.160595'),(302, '2013-09-09 00:00:16.249476', 0), (300, '2013-09-09 00:00:16.249529', 0),(325, '2013-09-09 00:00:16.250241'), (325, '2013-09-09 00:00:16.260295', 0)]" cdr['events'] ='{"input2":"None","input3":"None","input0":"+911149426200","input1":"+911143790236","input6":"None","cdr_si":true,"input4":"None","input5":"None","input8":"None","input9":"None","voicemailurl":null,"POSTPROCESS":false,"recordingFile":[],"input7":"None","hangup_time":"2013-09-09 00:00:16.000000","conf_called_to":"+911143790236","answered":true,"status_from_bridge_api":{"Legb_Start_Time":"2013-09-09 00:00:07","Hangup_Cause":"NORMAL_CLEARING","HangupBy":"LegB","HangupTime":"2013-09-09 00:00:16","other_leg_cdr":[]"Channel_Num":"FreeTDM/6:3/01143790236","LegB_UUID":"c5e4a6c9-d48d-4868-b1b5-475932673c80","Bridge_Number":"+911143790236","JoinTime":"2013-09-09 00:00:08"},"session_uuid":"05eb3730-9b86-48cd-b495-15216a536fd2","confFile":"05eb3730-9b86-48cd-b495-15216a536fd2","hangup_cause":900,"member_info":{"Hangup_Cause":"NORMAL_CLEARING","HangupBy":"LegB","HangupTime":"2013-09-09 00:00:16","LegB_UUID":"c5e4a6c9-d48d-4868-b1b5-475932673c80","Bridge_Number":"+911143790236","JoinTime":"2013-09-09 00:00:08"},"action_id":"1116","direction":"_incoming","incall_answered":true,"start_time":"2013-09-09 00:00:07.391113","pickup_time":"2013-09-09 00:00:07.000000","LegB_join_time":"2013-09-09 00:00:08","session_knumber":"43790229","ivr_disp_number":"+911143790229","display_number":"+911143790229","reference_number":800056382,"INCOMING":true,"recordingFileUUID":[],"caller":"+911149426200","LegB_hangup_time":"2013-09-09 00:00:16","debug":false,"record_custom":[],"called":"+911143790229","unique_id":"05eb3730-9b86-48cd-b495-15216a536fd2"}' cdr['fs_chan_info'] = "FreeTDM/3:2/43790229" cdr['ref_uuid'] = str(uuid.uuid4()) cdr['hangup_time'] = str(datetime.datetime.now()) cdr['pickup_time'] = str(datetime.datetime.now()) cdr['ivr_refnum'] = random.randint(81200345, 812000000) cdr['did_number'] = "+9111"+str(random.randint(43790229, 45000000)) cdr['call_type'] = random.sample(['incoming','outgoing'],1)[0] cdr['attempt_number'] = random.sample(['1', '2', '3'],1)[0] cdr['fs'] = "fs7prod" cdr['data'] = 'null' cdr['hangup_cause'] = str(random.randint(400, 404)) cdr['priority'] = str(random.randint(1, 6)) cdr['end_time'] = str(datetime.datetime.now()+datetime.timedelta(minutes = 4)) cdr['start_time'] = str(datetime.datetime.now()) cdr['called'] = "+91"+str(random.randint(9654000000, 9654999999)) cdr['caller'] = "+91"+str(random.randint(9654000000, 9654999999)) cdr['unique_id'] = cdr['ref_uuid'] cdr = json.dumps(cdr) return cdr
def init_m(coef,set,sol): if set['initial_m'] == 'rectangular_1_tip': y = set['Ny']/2 + 5 x = 5 if y % 2 == 0: y += 1 sol['m'][x,y] = 1 elif set['initial_m'] == 'rectangular_tip': '''Randomly spotted in domain''' for tt in range(0,250): idx_m_1 = random.sample(range(1,set['Nx'],2),15) idx_m_2 = random.sample(range(1,set['Ny'],2),15) for id in range(0,len(idx_m_1)): if not sol['m'][idx_m_1[id], idx_m_2[id]] == 1 and not sol['n'][idx_m_1[id], idx_m_2[id]] == 1: sol['m'][idx_m_1[id], idx_m_2[id]] = 1 del idx_m_1 del idx_m_2 elif set['initial_m'] == 'retina_1_tip': sol['m'][187,213] = 1 elif set['initial_m'] == 'retina_tip': '''Randomly spotted in domain''' for tt in range(0,250): idx_m_1 = random.sample(range(1,set['Nx'],2),100) idx_m_2 = random.sample(range(1,set['Ny'],2),100) for id in range(0,len(idx_m_1)): r_f = numpy.sqrt((idx_m_1[id]*set['Hh']-set['O_x'])**2 + (idx_m_2[id]*set['Hh']-set['O_y'])**2) if not sol['m'][idx_m_1[id], idx_m_2[id]] == 1 and not sol['n'][idx_m_1[id], idx_m_2[id]] == 1 and r_f > set['R_min']: sol['m'][idx_m_1[id], idx_m_2[id]] = 1 del idx_m_1 del idx_m_2 return sol
def train_sample(feature_str, label, pos_train=0.5, neg_train=1000): """Perform training and testing using disjont samples from the full set of label_values. This is equivalent to doing one round of cross validation (see classipy.cross_validation) only it keeps the values around for display. Args: """ all_hashes = list(cass.get_image_hashes()) pos_hashes = [_[0] for _ in cass.buffered_get_row(cf_labels, label)] neg_hashes = list(set(all_hashes) - set(pos_hashes)) if 0 < pos_train <= 1: pos_train = int(pos_train * len(pos_hashes)) if 0 < neg_train <= 1: neg_train = int(neg_train * len(neg_hashes)) # Choose a training sample and a testing sample if len(pos_hashes) < pos_train: raise ValueError('Not enough positive examples %s(%d)' % \ (label, len(pos_hashes))) if len(neg_hashes) < neg_train: raise ValueError('Not enough negative examples %s(%d)' % \ (label, len(neg_hashes))) pos_sample = random.sample(pos_hashes, pos_train) neg_sample = random.sample(neg_hashes, neg_train) labels = [-1 for _ in neg_sample] + [1 for _ in pos_sample] values = cass.get_feature_values(feature_str, neg_sample+pos_sample) global label_values label_values = zip(labels, values) print 'Training classifier with sample %d' % len(label_values) train_classifier(label_values)
def setUp(self): IMP.test.TestCase.setUp(self) self.numbers = random.sample(range(0, 1000), 100) self.keys = random.sample(range(0, 1000), 100) self.dictionary = dict() for key, val in zip(self.keys, self.numbers): self.dictionary[key] = val
def split_gtf(gtf, sample_size=None, out_dir=None): """ split a GTF file into two equal parts, randomly selecting genes. sample_size will select up to sample_size genes in total """ if out_dir: part1_fn = os.path.basename(os.path.splitext(gtf)[0]) + ".part1.gtf" part2_fn = os.path.basename(os.path.splitext(gtf)[0]) + ".part2.gtf" part1 = os.path.join(out_dir, part1_fn) part2 = os.path.join(out_dir, part2_fn) if file_exists(part1) and file_exists(part2): return part1, part2 else: part1 = tempfile.NamedTemporaryFile(delete=False, suffix=".part1.gtf").name part2 = tempfile.NamedTemporaryFile(delete=False, suffix=".part2.gtf").name db = get_gtf_db(gtf) gene_ids = set([x['gene_id'][0] for x in db.all_features()]) if not sample_size or (sample_size and sample_size > len(gene_ids)): sample_size = len(gene_ids) gene_ids = set(random.sample(gene_ids, sample_size)) part1_ids = set(random.sample(gene_ids, sample_size / 2)) part2_ids = gene_ids.difference(part1_ids) with open(part1, "w") as part1_handle: for gene in part1_ids: for feature in db.children(gene): part1_handle.write(str(feature) + "\n") with open(part2, "w") as part2_handle: for gene in part2_ids: for feature in db.children(gene): part2_handle.write(str(feature) + "\n") return part1, part2
def convert(snippets,phrase): class_names=[w.capitalize() for w in random.sample(words,snippet.count("%%%"))] #print class_names other_names=random.sample(words,snippet.count("***")) #print other_names results=[] param_names=[] for i in range(0,snippet.count("@@@")): param_count=random.randint(1,3) param_names.append(','.join(random.sample(words,param_count))) #print param_names for sentence in [snippet, phrase]: #print sentence result=sentence[:] #print result #result=[snippet,phrase] for word in class_names: result=result.replace('%%%',word,1) #print word #print result+"a class names" for word in other_names : result=result.replace("***",word,1) #print word #print result+"a other names" for word in param_names: result=result.replace("@@@",word,1) #print word #print result+"a param names" results.append(result) #print results #print result return results
def __init__(self, n=1000, k=10, p=0.02947368): self.n = n self.k = k self.p = p self.ws = nx.watts_strogatz_graph(self.n, self.k, self.p, seed='nsll') nx.set_node_attributes(self.ws, 'SIR', 'S') self.clustering = nx.clustering(self.ws) self.betweenness = nx.betweenness_centrality(self.ws) p_r_0 = 0.001 r_0 = int(self.n * p_r_0) if r_0 < 1: r_0 = 1 random.seed('nsll') self.r = random.sample(self.ws.nodes(), r_0) i_0 = 4 if i_0 < r_0: i_0 += 1 random.seed('nsll') self.infected = random.sample(self.ws.nodes(), i_0) for n in self.infected: self.ws.node[n]['SIR'] = 'I' for n in self.r: self.ws.node[n]['SIR'] = 'R' self.s = self.n - len(self.infected) - len(self.r) print(self.r) print(self.infected)
def createCrossValidationFiles(n): # Make copies of the original positive and negative review files copyFile('hotelPosT-train.txt', 'postrain-reviews.txt') copyFile('hoteNegT-train.txt', 'negtrain-reviews.txt') # Read the positive and negative reviews into two separate lists posReviews = readFileIntoList('postrain-reviews.txt') negReviews = readFileIntoList('negtrain-reviews.txt') # Use n random reviews for the positive review test set # Use the remaining reviews for the positive training set testPosReviews = random.sample(posReviews, n) trainingPosReviews = [review for review in posReviews if review not in testPosReviews] # Use n random reviews for the negative review test set # Use the remaining reviews for the negative training set testNegReviews = random.sample(negReviews, n) trainingNegReviews = [review for review in negReviews if review not in testNegReviews] # Write the test reviews to the test set file writeListToFile('test-reviews.txt', testPosReviews, False) writeListToFile('test-reviews.txt', testNegReviews, True) # Write the training reviews to the test set file writeListToFile('postrain-reviews.txt', trainingPosReviews, False) writeListToFile('negtrain-reviews.txt', trainingNegReviews, False)
def pick_one(table): """Return one random element of a sequence or dict""" try: return table[random.sample(table.keys(), 1)[0]] except AttributeError: return random.sample(table, 1)[0]
def ReWeightedRW(G, incomes, sample_size): node = random.sample(G, 1)[0] sampling = list() node_degrees = list() node_incomes = list() for i in range(sample_size): sampling.append(node) node_degrees.append(len(G[node])) node_incomes.append(incomes[node]) # select a random neighbor of node node = random.sample(G.get(node), 1)[0] # the normal random walk. biased, without correction. biased_average_degrees = numpy.average(node_degrees) biased_average_incomes = numpy.average(node_incomes) # correcting the random walk sampling with inversed-node-degree prob normalization_constant = 0.0 for x in node_degrees: normalization_constant += (1.0 / x) prob = list() for x in node_degrees: temp = (1.0 / x) / normalization_constant prob.append(temp) reweighted_average_degrees = sum(i*j for i, j in zip(prob,node_degrees)) reweighted_average_incomes = sum(i*j for i, j in zip(prob,node_incomes)) return [biased_average_degrees, reweighted_average_degrees, biased_average_incomes, reweighted_average_incomes]
def convert(snippet, phrase): ''' :param snippet: :param phrase: :return: ''' class_names = [w.capitalize() for w in random.sample(WORDS, snippet.count("%%%"))] other_names = random.sample(WORDS, snippet.count("***")) results = [] param_names = [] for i in range(0, snippet.count("@@@")): param_count = random.randint(1,3) param_names.append(', '.join(random.sample(WORDS, param_count))) for sentence in snippet, phrase: result = sentence[:]# result is a list. a copy of sentence # fake class names for word in class_names: result = result.replace("%%%", word, 1) #.replace replaces a string. # fake other names for word in other_names: result = result.replace("***", word, 1) # fake parameter lists for word in param_names: result = result.replace("@@@", word, 1) results.append(result) return results
def sequential_rotor_estimation_cuda(reference_model_array, query_model_array, n_samples, n_objects_per_sample, mutation_probability=None): # Stack up a list of numbers total_matches = n_samples*n_objects_per_sample sample_indices = random.sample(range(total_matches), total_matches) n_mvs = reference_model_array.shape[0] sample_indices = [i%n_mvs for i in sample_indices] if mutation_probability is not None: reference_model_array_new = [] mutation_flag = np.random.binomial(1,mutation_probability,total_matches) for mut, i in zip(mutation_flag, sample_indices): if mut: ref_ind = random.sample(range(len(reference_model_array)), 1)[0] else: ref_ind = i reference_model_array_new.append(reference_model_array[ref_ind,:]) reference_model_array_new = np.array(reference_model_array_new) else: reference_model_array_new = np.array([reference_model_array[i,:] for i in sample_indices], dtype=np.float64) query_model_array_new = np.array([query_model_array[i, :] for i in sample_indices], dtype=np.float64) output = np.zeros((n_samples,32), dtype=np.float64) cost_array = np.zeros(n_samples, dtype=np.float64) blockdim = 64 griddim = int(math.ceil(reference_model_array_new.shape[0] / blockdim)) sequential_rotor_estimation_kernel[griddim, blockdim](reference_model_array_new, query_model_array_new, output, cost_array) return output, cost_array
def equalSample(ageF, out1F, out2F, g): userAge = dict() for line in open(ageF, 'rb'): items = line.split("::") userAge[items[0]] = int(items[1]) userGroup = dict() # We have six groups groups = g for i in range(groups): userGroup[i + 1] = set() for user in userAge: if 1 <= g and userAge[user] <= 18: userGroup[1].add(user) elif 2 <= g and userAge[user] <= 22: userGroup[2].add(user) elif 3 <= g and userAge[user] <= 33: userGroup[3].add(user) elif 4 <= g and userAge[user] <= 45: userGroup[4].add(user) elif 5 <= g and userAge[user] <= 65: userGroup[5].add(user) elif 6 <= g: userGroup[6].add(user) glen = [] for i in range(groups): glen.append(len(userGroup[i + 1])) print glen benchmark = len(userGroup[3]) outf1 = open(out1F, 'w') outf2 = open(out2F, 'w') distR = [] for i in range(groups): distR.append(0) sampledUser = set() for ag in userGroup: users = userGroup[ag] if len(users) > benchmark: users = set(random.sample(users, benchmark)) sampledUser |= users outList = [] for i in range(groups): if i == (ag - 1): outList.append('1') else: outList.append('0') for user in users: print >> outf2, ' '.join(outList) distR[ag - 1] = len(users) for line in open(ageF, 'rb'): user = line.split("::")[0] if user in sampledUser: print >> outf1, line.rstrip('\r\n') outf1.close() outf2.close() print '---------------Finish the equal sampling------------------' print distR
def _get_mprankmap(self, prankconn, rinfo): return random.sample(range(len(rinfo)), len(rinfo))
lista[int(relations.index(name))].append(model) #for v in lista: # print(v[0]) # print('------') in_file.close() iterations = 100 acc_svm = 0 acc_apost = 0 for ite in range(0, iterations): lista_aTratar = [] pert = [] lista_samples = np.zeros(len(lista), dtype=object) for i in range(0, len(lista)): if len(lista[i]) > 500: lista_samples[i] = random.sample(lista[i], 500) else: lista_samples[i] = lista[i] for item in lista_samples[i]: lista_aTratar.append(item) pert.append(i + 1) for v in lista_samples: print(len(v)) X_train, X_test, y_train, y_test = train_test_split(lista_aTratar, pert, test_size=0.4, random_state=0) [datos, muestras, muestras_posteriori] = modelar(X_train, y_train, X_test) print(muestras_posteriori[0]) from sklearn import svm
def __init__(self): self.WIDTH = 600 self.HEIGHT = 700 self.WIN = pygame.display.set_mode((self.WIDTH, self.HEIGHT)) pygame.display.set_caption("Minesweeper") pygame.init() pygame.font.init() self.FONT = pygame.font.SysFont('comicsans', 30) self.END_FONT = pygame.font.SysFont('comicsans', 60) self.FPS = 60 self.clock = pygame.time.Clock() self.runWIN = True self.end_won = False self.end_lost = False self.first_move = True icon = pygame.image.load("images/bomb.png") pygame.display.set_icon(icon) #objects2D - IMAGES self.stone = pygame.image.load("images/stone.png") self.flag = pygame.image.load("images/flag.png") self.not_flag = pygame.image.load("images/not_flag.png") self.num_1 = pygame.image.load("images/1.png") self.num_2 = pygame.image.load("images/2.png") self.num_3 = pygame.image.load("images/3.png") self.num_4 = pygame.image.load("images/4.png") self.num_5 = pygame.image.load("images/5.png") self.num_6 = pygame.image.load("images/6.png") self.num_7 = pygame.image.load("images/7.png") self.bomb = pygame.image.load("images/bomb.png") self.bomb_exp = pygame.image.load("images/bomb_exp.png") self.nothing = pygame.image.load("images/nothing.png") self.smiley = pygame.image.load("images/smiley.png") self.lost_smiley = pygame.image.load("images/lost.png") self.size_imgs = (30, 30) self.stone = pygame.transform.scale(self.stone, self.size_imgs) self.flag = pygame.transform.scale(self.flag, self.size_imgs) self.not_flag = pygame.transform.scale(self.not_flag, self.size_imgs) self.num_1 = pygame.transform.scale(self.num_1, self.size_imgs) self.num_2 = pygame.transform.scale(self.num_2, self.size_imgs) self.num_3 = pygame.transform.scale(self.num_3, self.size_imgs) self.num_4 = pygame.transform.scale(self.num_4, self.size_imgs) self.num_5 = pygame.transform.scale(self.num_5, self.size_imgs) self.num_6 = pygame.transform.scale(self.num_6, self.size_imgs) self.num_7 = pygame.transform.scale(self.num_7, self.size_imgs) self.bomb = pygame.transform.scale(self.bomb, self.size_imgs) self.bomb_exp = pygame.transform.scale(self.bomb_exp, self.size_imgs) self.nothing = pygame.transform.scale(self.nothing, self.size_imgs) self.smiley = pygame.transform.scale(self.smiley, (int(self.size_imgs[0] * 1.5), int(self.size_imgs[1] * 1.5))) self.lost_smiley = pygame.transform.scale(self.lost_smiley, (int(self.size_imgs[0] * 1.5), int(self.size_imgs[1] * 1.5))) #colors self.BLACK = (0, 0, 0) self.WHITE = (255, 255, 255) self.GRAY = (150, 150, 150) self.RED = (255, 0, 0) #offset for grid self.y_offset = 100 self.objects = [] self.field_x, self.field_y = 20, 20 for elem in range(self.field_x * self.field_y): self.objects.append(object2D("nothing")) self.number_of_bombs = self.field_x * self.field_y // 10 random_indices = random.sample(range(0, len(self.objects)), self.number_of_bombs) for index in random_indices: self.objects[index].bomb = True self.objects[index].object_name = "bomb" for index, object in enumerate(self.objects): if not object.bomb: nb_indexes = self.get_neighbours(object, index) num_bombs = 0 for nb_index in nb_indexes: if self.objects[nb_index].bomb == True: num_bombs += 1 self.objects[index].bomb_neighbours = num_bombs object.pic = self.stone if num_bombs == 0: object.pic_not_hidden = self.nothing elif num_bombs == 1: object.pic_not_hidden = self.num_1 object.object_name = "neighbour" elif num_bombs == 2: object.pic_not_hidden = self.num_2 object.object_name = "neighbour" elif num_bombs == 3: object.pic_not_hidden = self.num_3 object.object_name = "neighbour" elif num_bombs == 4: object.pic_not_hidden = self.num_4 object.object_name = "neighbour" elif num_bombs == 5: object.pic_not_hidden = self.num_5 object.object_name = "neighbour" elif num_bombs == 6: object.pic_not_hidden = self.num_6 object.object_name = "neighbour" elif num_bombs == 7: object.pic_not_hidden = self.num_7 object.object_name = "neighbour"
def sample(self): return random.sample(self.buffer, self.batch_size)
def run( local_rank: int, device: str, experiment_name: str, gpus: Optional[Union[int, List[int], str]] = None, dataset_root: str = "./dataset", log_dir: str = "./log", model: str = "fasterrcnn_resnet50_fpn", epochs: int = 13, batch_size: int = 4, lr: float = 0.01, download: bool = False, image_size: int = 256, resume_from: Optional[dict] = None, ) -> None: bbox_params = A.BboxParams(format="pascal_voc") train_transform = A.Compose( [A.HorizontalFlip(p=0.5), ToTensorV2()], bbox_params=bbox_params, ) val_transform = A.Compose([ToTensorV2()], bbox_params=bbox_params) download = local_rank == 0 and download train_dataset = Dataset(root=dataset_root, download=download, image_set="train", transforms=train_transform) val_dataset = Dataset(root=dataset_root, download=download, image_set="val", transforms=val_transform) vis_dataset = Subset(val_dataset, random.sample(range(len(val_dataset)), k=16)) train_dataloader = idist.auto_dataloader(train_dataset, batch_size=batch_size, shuffle=True, collate_fn=collate_fn, num_workers=4) val_dataloader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, collate_fn=collate_fn, num_workers=4) vis_dataloader = DataLoader(vis_dataset, batch_size=batch_size, shuffle=False, collate_fn=collate_fn, num_workers=4) model = idist.auto_model(model) scaler = GradScaler() optimizer = SGD(lr=lr, params=model.parameters()) optimizer = idist.auto_optim(optimizer) scheduler = OneCycleLR(optimizer, max_lr=lr, total_steps=len(train_dataloader) * epochs) def update_model(engine, batch): model.train() images, targets = batch images = list(image.to(device) for image in images) targets = [{ k: v.to(device) for k, v in t.items() if isinstance(v, torch.Tensor) } for t in targets] with torch.autocast(device, enabled=True): loss_dict = model(images, targets) loss = sum(loss for loss in loss_dict.values()) optimizer.zero_grad() scaler.scale(loss).backward() scaler.step(optimizer) scaler.update() loss_items = {k: v.item() for k, v in loss_dict.items()} loss_items["loss_average"] = loss.item() / 4 return loss_items @torch.no_grad() def inference(engine, batch): model.eval() images, targets = batch images = list(image.to(device) for image in images) outputs = model(images) outputs = [{k: v.to("cpu") for k, v in t.items()} for t in outputs] return { "y_pred": outputs, "y": targets, "x": [i.cpu() for i in images] } trainer = Engine(update_model) evaluator = Engine(inference) visualizer = Engine(inference) aim_logger = AimLogger( repo=os.path.join(log_dir, "aim"), experiment=experiment_name, ) CocoMetric(convert_to_coco_api(val_dataset)).attach(evaluator, "mAP") @trainer.on(Events.EPOCH_COMPLETED) @one_rank_only() def log_validation_results(engine): evaluator.run(val_dataloader) visualizer.run(vis_dataloader) @trainer.on(Events.ITERATION_COMPLETED) def step_scheduler(engine): scheduler.step() aim_logger.log_metrics({"lr": scheduler.get_last_lr()[0]}, step=engine.state.iteration) @visualizer.on(Events.EPOCH_STARTED) def reset_vis_images(engine): engine.state.model_outputs = [] @visualizer.on(Events.ITERATION_COMPLETED) def add_vis_images(engine): engine.state.model_outputs.append(engine.state.output) @visualizer.on(Events.ITERATION_COMPLETED) def submit_vis_images(engine): aim_images = [] for outputs in engine.state.model_outputs: for image, target, pred in zip(outputs["x"], outputs["y"], outputs["y_pred"]): image = (image * 255).byte() pred_labels = [ Dataset.class2name[label.item()] for label in pred["labels"] ] pred_boxes = pred["boxes"].long() image = draw_bounding_boxes(image, pred_boxes, pred_labels, colors="red") target_labels = [ Dataset.class2name[label.item()] for label in target["labels"] ] target_boxes = target["boxes"].long() image = draw_bounding_boxes(image, target_boxes, target_labels, colors="green") aim_images.append(aim.Image(image.numpy().transpose( (1, 2, 0)))) aim_logger.experiment.track(aim_images, name="vis", step=trainer.state.epoch) losses = [ "loss_classifier", "loss_box_reg", "loss_objectness", "loss_rpn_box_reg", "loss_average" ] for loss_name in losses: RunningAverage(output_transform=lambda x: x[loss_name]).attach( trainer, loss_name) ProgressBar().attach(trainer, losses) ProgressBar().attach(evaluator) objects_to_checkpoint = { "trainer": trainer, "model": model, "optimizer": optimizer, "lr_scheduler": scheduler, "scaler": scaler, } checkpoint = Checkpoint( to_save=objects_to_checkpoint, save_handler=DiskSaver(log_dir, require_empty=False), n_saved=3, score_name="mAP", global_step_transform=lambda *_: trainer.state.epoch, ) evaluator.add_event_handler(Events.EPOCH_COMPLETED, checkpoint) if resume_from: Checkpoint.load_objects(objects_to_checkpoint, torch.load(resume_from)) aim_logger.log_params({ "lr": lr, "image_size": image_size, "batch_size": batch_size, "epochs": epochs, }) aim_logger.attach_output_handler(trainer, event_name=Events.ITERATION_COMPLETED, tag="train", output_transform=lambda loss: loss) aim_logger.attach_output_handler( evaluator, event_name=Events.EPOCH_COMPLETED, tag="val", metric_names=["mAP"], global_step_transform=global_step_from_engine( trainer, Events.ITERATION_COMPLETED), ) trainer.run(train_dataloader, max_epochs=epochs)
print(random.randrange(10)) # 문법) randrange(min,max) : min값부터 max값사이의 랜덤값을 int타입으로 리턴 print(random.randrange(10, 20)) # random모듈의 choice(리스트)함수는 리스트 내부에 있는 요소를 랜덤하게 선택 print(random.choice([1, 2, 3, 4, 5])) # random모듈의 shuffle(리스트)함수는 리스트의 요소들을 랜덤하게 섞어서 제공 list = ["ice cream", "pancakes", "brownies", "cookies", "candy"] random.shuffle(list) print(list) # random모듈의 sample(리스트, k) 함수는 # 리스트의 요소 중에 k개를 랜덤으로 뽑아낸다. print(random.sample([1, 2, 3, 4, 5], k=2)) # 예제. 계산 문제를 맞추는 게임 -> random_1.py파일 생성 # 예제. 타자 게임 -> typing.py파일 생성 # 예제. 거북이 그래픽 모듈 사용하기 -> turtle_1.py파일 생성 import sys print(sys.getwindowsversion()) print("-------") print(sys.copyright) print("-------") print(sys.version) # 프로그램 강제종료 # sys.exit()
def createName(): name = "".join(random.sample(string.printable[:26], 10)) return name
temp_xml = glob(r'F:\RM\DJI_ROCO\robo*\*\*') saveBasePath = r"F:\RM\DJI_ROCO" trainval_percent = 1 train_percent = 1 total_xml = [] for xml in temp_xml: if xml.endswith(".xml"): total_xml.append(xml) num = len(total_xml) list = range(num) tv = int(num * trainval_percent) tr = int(tv * train_percent) trainval = random.sample(list, tv) train = random.sample(trainval, tr) print("train and val size", tv) print("traub suze", tr) ftrainval = open(os.path.join(saveBasePath, 'trainval.txt'), 'w') ftest = open(os.path.join(saveBasePath, 'test.txt'), 'w') ftrain = open(os.path.join(saveBasePath, 'train.txt'), 'w') fval = open(os.path.join(saveBasePath, 'val.txt'), 'w') for i in list: name = total_xml[i][:-4] + '\n' if i in trainval: ftrainval.write(name) if i in train: ftrain.write(name)
"StormRider", "Gold", "Door", "Close", ] # 当前路径 data_path = getcwd() train_percent = 0.9 Annotations_path = 'Annotations' total_xml = os.listdir(Annotations_path) num = len(total_xml) list = range(num) num_train = int(num * train_percent) train_list = random.sample(list, num_train) ftrain = open('train.txt', 'w') fval = open('val.txt', 'w') for i in list: xml_path = os.path.join(getcwd(), Annotations_path, total_xml[i]) xml_content = open(xml_path, 'r') write_content = xml_path.replace('Annotations', 'JPGImages').replace('xml', 'jpg') tree = ET.parse(xml_path) root = tree.getroot() for obj in root.iter('object'): difficult = obj.find('difficult').text cls = obj.find('name').text if cls not in classes or int(difficult) == 1: continue
def CoordPlot(image_dir, coord_file, nplot=None, save_w=4000, save_h=3000, tile_size=100, makegrid=True, random_select=0, plotfile='coordplot.png'): """ Plot individual images as tiles according to provided coordinates """ # read data coords = np.genfromtxt(coord_file, delimiter=',') filenames = sorted(os.listdir(image_dir)) if nplot==None: nplot = len(filenames) # subsample if necessary if nplot < len(filenames): if random_select: smpl = random.sample(range(len(filenames)), nplot) else: smpl = [i for i in range(nplot)] filenames = [filenames[s] for s in smpl] coords = coords[smpl,:] # min-max tsne coordinate scaling for i in range(2): coords[:,i] = coords[:,i] - coords[:,i].min() coords[:,i] = coords[:,i] / coords[:,i].max() tx = coords[:,0] ty = coords[:,1] full_image = Image.new('RGB', (save_w, save_h)) for fn, x, y in zip(filenames, tx, ty): img = Image.open(os.path.join(image_dir, fn)) # load raw png image npi = np.array(img, np.uint8) # convert to uint np arrat rsz = resize(npi, (tile_size, tile_size), # resize, which converts to float64 mode='constant', anti_aliasing=True) npi = (2**8 - 1) * rsz / rsz.max() # rescale back up to original 8 bit res, with max npi = npi.astype(np.uint8) # recast as uint8 img = Image.fromarray(npi) # convert back to image full_image.paste(img, (int((save_w - tile_size) * x), int((save_h - tile_size) * y))) full_image.save(plotfile) def Cloud2Grid(coords, gridw, gridh): """ convert points into a grid """ nx = coords[:,0] ny = coords[:,1] nx = nx - nx.min() ny = ny - ny.min() nx = gridw * nx // nx.max() ny = gridh * ny // ny.max() nc = np.column_stack((nx, ny)) return(nc) if makegrid: grid_assignment = Cloud2Grid(coords, gridw=save_w/tile_size, gridh=save_h/tile_size) grid_assignment = grid_assignment * tile_size grid_image = Image.new('RGB', (save_w, save_h)) for img, grid_pos in zip(filenames, grid_assignment): x, y = grid_pos tile = Image.open(os.path.join(image_dir, img)) tile = tile.resize((tile_size, tile_size), Image.ANTIALIAS) grid_image.paste(tile, (int(x), int(y))) grid_image.save(plotfile[:len(plotfile)-4] + '_grid' + plotfile[-4:])
def random_batch(): return random.sample(list(zip(sentences[:10000],labels[:10000])),50)
def _get_pin(self,length=5): """ Return a numeric PIN with length digits """ return str(random.sample(range(10**(length-1), 10**length), 1)[0])
região = random.choice( [r for lista in regiões for r in lista if r.habitável]) return Nômade(nome=nome, região=região, população=POPULAÇÃO, natalidade=random.random() * NATALIDADE, mortalidade=random.random() * MORTALIDADE) # Definição das condições iniciais do ambiente: regiões = [[região_aleatória() for _ in range(NUM_REGIÕES)] for _ in range(NUM_REGIÕES)] nômades = [ tribo_aleatória(nome, regiões) for nome in random.sample(TRIBOS_BRASILEIRAS, NUM_TRIBOS) ] for época in range(100): for lista in regiões: for região in lista: região.regenera() for tribo in nômades: if tribo.população > 0: tribo.subsistência() tribo.atualiza_população() if tribo.vai_migrar(): região = tribo.seleciona(vizinhança(tribo.região)) migração(tribo, região)
os.chdir('D:/Documents/1-ENSAE/3A/S2/Data_storytelling/data_storytelling/website') df = pd.read_csv('../Data/df_sub_sirene.csv', ',') df = df[df["montant"]>0] df = df[df["Géolocalisation de l'établissement"].notna()] df["nom_beneficiaire"] = df['nom_beneficiaire'].str.replace('[^\w\s]','') df["nom_beneficiaire"] = df['nom_beneficiaire'].apply(unidecode.unidecode) df[['latitude','longitude']] = df["Géolocalisation de l'établissement"].str.split(',', expand=True) #On tire 100 asso de manière aléatoire pour les projeter sur la carte noms_random = random.sample(list(df["nom_beneficiaire"]), 100) map_noms = folium.Map(location=[48.86, 2.34], zoom_start=12) mc = folium.plugins.MarkerCluster() #on retient les monuments pour lesquels il existe une latitude et une longitude for nom in noms_random: lat = df['latitude'][df["nom_beneficiaire"]==nom].iloc[0] lon = df['longitude'][df["nom_beneficiaire"]==nom].iloc[0] mc.add_child(folium.Marker(location=[lat,lon], popup=(folium.Popup(nom, parse_html=True)))) map_noms.add_child(mc) map_noms map_noms.save('map_noms.html')
""" Compares two lists and outputs a list that has common elements """ import random as rn a = rn.sample(range(1, 30), 12) b = rn.sample(range(1, 30), 16) newlist = [] [newlist.append(n1) for n1 in a if n1 in b and n1 not in newlist] print(sorted(newlist))
motifs = [ # seq.start, seq.end, shape, width, height, fgcolor, bgcolor [120, 130, ">", 34, 13, "black", "red", None], [145, 150, "<", 60, 5, "black", "green", None], [10, 30, "o", 100, 10, "black", "rgradient:blue", None], [20, 50, "[]", 100, 10, "blue", "pink", None], [55, 80, "()", 100, 10, "blue", "rgradient:purple", None], [160, 170, "^", 50, 14, "black", "yellow", None], [172, 180, "v", 20, 12, "black", "rgradient:orange", None], [185, 190, "o", 12, 12, "black", "brown", None], [198, 200, "<>", 15, 15, "black", "rgradient:gold", None], [210, 240, "compactseq", 2, 10, None, None, None], [300, 320, "seq", 10, 10, None, None, None], [340, 350, "<>", 15, 15, "black", "rgradient:black", None], ] # Show usage help for SeqMotifFace print SeqMotifFace.__doc__ # Create a random tree and add to each leaf a random set of motifs # from the original set t = Tree() t.populate(40) for l in t.iter_leaves(): seq_motifs = sample(motifs, randint(2, len(motifs))) seqFace = SeqMotifFace(seq, seq_motifs, intermotif_format="line", seqtail_format="compactseq") seqFace.margin_bottom = 4 f = l.add_face(seqFace, 0, "aligned") t.show()
def aSmallSet(a, b): return random.sample(range(a,b),100)
while True: n = p - m + 1 for i in range(1, n // r + 1): insertion_sort(A, m + (i - 1) * r, m + i * r - 1) # 把中间值收集到A(m:p)的前部 inter_change(A, m + i - 1, m + (i - 1) * r + r // 2 - 1) j = SEL(A, m, m + n // r - 1, math.ceil(n / r / 2)) # mm inter_change(A, m, j) # 产生划分元素 j = p j = partition(A, m, j) if j - m + 1 == k: return j elif j - m + 1 > k: p = j - 1 else: k -= j - m + 1 m = j + 1 # 测试代码 if __name__ == '__main__': for i in range(3): A = random.sample(range(0, 100), 30) # 随机生成30个数的列表 A.insert(0, 'START') i = SEL(A, 1, 30, 8) print('原始的A数组为:', A) print('第', 8, '小的元素为:', A[i])
return model model = autoencoder(hidden_layer_size=154) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['acc']) model.fit(x_train, x_train, epochs=10) output = model.predict(x_test) import matplotlib.pyplot as plt import random fig, ((ax1,ax2,ax3,ax4,ax5),(ax6,ax7,ax8,ax9,ax10)) = \ plt.subplots(2,5,figsize=(20,7)) # 이미지 다섯 개를 무작위로 고른다. random_images = random.sample(range(output.shape[0]), 5) # 원본(입력) 이미지를 맨 위에 그린다. for i, ax in enumerate([ax1, ax2, ax3, ax4, ax5]): ax.imshow(x_test[random_images[i]].reshape(28, 28), cmap='gray') if i == 0: ax.set_ylabel("INPUT", size=20) ax.grid(False) ax.set_xticks([]) ax.set_yticks([]) # 오토 인코더가 출력한 이미지를 아래에 그린다. for i, ax in enumerate([ax6, ax7, ax8, ax9, ax10]): ax.imshow(output[random_images[i]].reshape(28, 28), cmap='gray') if i == 0: ax.set_ylabel("OUTPUT", size=20)
def neutralizer(vasp_folder, atoms, cell, struct_list, file, struct_type, wrongs, bcodes): struct_num = 0 max_trials = 1000 # number of trials max_structures = 50 # number of trials Num = [0, 0] # number of Ni and S in structure remove_ids = [] # id of all undercoordinated atoms of type_to_remove remove_bcodes = [ ] # bcodes of all uandercoordinated atoms of type_to_remove Num[1] = sum(at[2][0] for at in atoms) # S ids are 1 Num[0] = len(atoms) - Num[1] remove_num = np.abs( Num[1] - Num[0]) # number of atoms to be remove to retain charge neutrality if remove_num != 0: if Num[1] > Num[0]: type_to_remove = 1 # S should be removed print(remove_num, "S atoms will be removed from", end=" ") else: type_to_remove = 0 # Ni should be removed print(remove_num, "Ni atoms will be removed from", end=" ") i = 0 for at in atoms: if at[2][0] == type_to_remove and at[3] != 132 and at[3] != 53: remove_ids.append([ at[0], at[3] ]) # all undercoordinate atom of type_to_remove are candidates remove_bcodes.append(at[3]) # store their bcodes i += 1 print(i, "undercoordinated atoms") remove_bcodes_set = list( set(remove_bcodes)) # unique bcodes in removal candidates remove_ids_sorted = sorted(remove_ids, key=lambda x: x[1]) # removed ids are grouped according to their bcodes remove_ids_grouped = [[key, [g[0] for g in group]] for key, group in itertools.groupby( remove_ids_sorted, lambda x: x[1])] structures = 1 trial = 0 while trial <= max_trials and structures <= max_structures: trial += 1 rm_ids = [] i = [''] * remove_num # """select remove_num elements from remove_bcodes_set randomly. There are bcodes removed atoms will be # selected from. If we select atoms to remove directly, the choice will be biased towards bcodes with large # numbers""" flag = 1 while flag == 1: flag = 0 for ii in range(remove_num): i[ii] = random.choice(remove_bcodes_set) # the number of bcode in i should be smaller than remove_bcodes for elem in i: if i.count(elem) > remove_bcodes.count(elem): flag = 1 for b in remove_bcodes_set: n = i.count(b) if n > 0: for sub_list in remove_ids_grouped: if b == sub_list[0]: temp = random.sample(sub_list[1], n) rm_ids.append(temp) flat_list = [item for sublist in rm_ids for item in sublist] neut_atoms = [x for x in atoms if x[0] not in flat_list] neut_atoms = CN(neut_atoms, cell) zero_bond = any((x[3] == 0 or x[3] == 81) for x in neut_atoms) neut_code = struc_code(neut_atoms) if any(elem == neut_code for elem in struct_list) or zero_bond: pass else: flag = 0 for id, atom in enumerate(neut_atoms): bcodes.add(atom[3]) if (any(x > 2 for x in atom[2]) or atom[2][1] > 1) and flag == 0: wrongs.append([file, len(struct_list), struct_type]) flag = 1 break struct_list.append(neut_code) struct_num += 1 write_poscar(vasp_folder, file, len(struct_list), struct_num, neut_atoms, cell, struct_type) structures += 1 path = vasp_folder / str(len(struct_list)) / 'atoms.json' write_to_json(path, neut_atoms) else: neut_code = struc_code(atoms) neut_atoms = atoms flag = 0 for id, atom in enumerate(neut_atoms): bcodes.add(atom[3]) if (any(x > 2 for x in atom[2]) or atom[2][1] > 1) and flag == 0: wrongs.append([file, len(struct_list), struct_type]) flag = 1 break if any(elem == neut_code for elem in struct_list): pass else: struct_list.append(neut_code) struct_num += 1 # print(struct_num, ": ", neut_code) write_poscar(vasp_folder, file, len(struct_list), struct_num, neut_atoms, cell, struct_type) path = vasp_folder / str(len(struct_list)) / 'atoms.json' write_to_json(path, neut_atoms) return struct_list, neut_atoms, wrongs, bcodes
def __cloneFilesSources(self): SOURCE_URL = FileManager.datasets['source']['url'] TRAINING_URL = FileManager.datasets['training']['url'] TESTING_URL = FileManager.datasets['testing']['url'] # foreach directory in '/Lang' folder ... languagesExamplesCounter = {} for languageFolder in [f for f in os.scandir(SOURCE_URL) if f.is_dir()]: language = str(languageFolder.name).lower() languagesExamplesCounter[language] = 0 # parse only selected languages if language in ConfigurationManager.getLanguages(): # preparing empty {languageFolder.name} for each dataset if not (os.path.isdir(os.path.join(TRAINING_URL, language))): os.mkdir(os.path.join(TRAINING_URL, language)) if not (os.path.isdir(os.path.join(TESTING_URL, language))): os.mkdir(os.path.join(TESTING_URL, language)) # count example foreach language for exampleFolder in FileManager.getExamplesFolders(languageFolder.path): for _ in FileManager.getExampleFiles(exampleFolder.path): languagesExamplesCounter[language] += 1 # print languages with examples counter less than {TRAINING_EXAMPLES_NUMBER} if languagesExamplesCounter[language] < TRAINING_EXAMPLES_NUMBER: print(' > [dataset] the total number of examples for the ' + language + ' is less than ' + str(TRAINING_EXAMPLES_NUMBER)) continue # for this language, the total examples number could be less than {TRAINING_EXAMPLES_NUMBER} indexesOfTrainingExamples = random.sample( range(1, languagesExamplesCounter[language]), TRAINING_EXAMPLES_NUMBER ) # list all examples in {languageFolder.name} folder exampleIndex = 0 for exampleFolder in FileManager.getExamplesFolders(languageFolder.path): # list all examples versions in {exampleFolder.name} folder for exampleVersionFile in FileManager.getExampleFiles(exampleFolder.path): exampleIndex += 1 # move file to right dataset if exampleIndex in indexesOfTrainingExamples: DATASET_TYPE = TRAINING_URL else: DATASET_TYPE = TESTING_URL # prepare destination folder example = str(exampleVersionFile.name).lower() exampleFolderUri = os.path.join(DATASET_TYPE, language, example) os.mkdir(exampleFolderUri) # copy the ORIGINAL source file content originalFileUri = FileManager.getOriginalFileUrl(exampleFolderUri) FileManager.createFile(originalFileUri) shutil.copyfile(exampleVersionFile.path, originalFileUri) # create the 'PARSED' version of the orginal file parsedFileUri = FileManager.getParsedFileUrl(exampleFolderUri) FileManager.createFile(parsedFileUri) parser = Parser() parser.initialize(originalFileUri, parsedFileUri) parser.parse() return self
def sample(self, batch_size):# ssample random experience from memory return random.sample(self.memory, batch_size)
def sample(self, batch_size=64): """Randomly sample a batch of experiences from memory.""" return random.sample(self.memory, k=self.batch_size)
def extract_2d_blocks_training(inputul, outputul, iteration, block_size_input, block_size_output, dim_output): ## inputul -- shape (num_batch, width, height, num_imaging_modalities) ## outputul -- shape (num_batch, width, height, num_imaging_modalitie) #### this will extract 4 training examples #### lista = np.arange(inputul.shape[0]) np.random.seed(iteration) np.random.shuffle(lista) current_index = lista[:2] semi_block_size_input = int(block_size_input // 2) semi_block_size_input2 = block_size_input - semi_block_size_input semi_block_size_output = int(block_size_output // 2) semi_block_size_output2 = block_size_output - semi_block_size_output list_blocks_input = [] list_blocks_segmentation = [] for _ in current_index: ##### iterating over 2D images ##### ### pad current input and output scan to avoid problems #### current_input = inputul[_, ...] current_output = outputul[_, ...] #### shape of current scan #### current_shape = inputul[_, ...].shape ################################################################################################################# #### random places being extracted -- most likely not containing any segmentation besides background class ###### ################################################################################################################# list_of_random_places1 = random.sample( range(semi_block_size_output, current_shape[0] - semi_block_size_output2), 2) list_of_random_places2 = random.sample( range(semi_block_size_output, current_shape[1] - semi_block_size_output2), 2) for __ in range(2): #### iterate over the 2 locations of the 3D cubes ##### central_points = [ list_of_random_places1[__], list_of_random_places2[__] ] current_input_padded, current_output_padded, central_points = check_and_add_zero_padding_2d_image( current_input, current_output, central_points, semi_block_size_input, semi_block_size_input2) list_blocks_segmentation.append( crop_2D_block(current_output_padded, central_points, semi_block_size_output, semi_block_size_output2)) list_blocks_input.append( crop_2D_block(current_input_padded, central_points, semi_block_size_input, semi_block_size_input2)) ############################################################################################### ##### specifically extract 2D patches with a non-background class ############################# ############################################################################################### ######################### ##### Class number 1 #### ######################### indices_tumor = np.where(current_output[..., 0] == 1.0) indices_tumor_dim1 = indices_tumor[0] indices_tumor_dim2 = indices_tumor[1] if len(indices_tumor_dim1) == 0: print('tumor not found') else: list_of_random_places = random.sample( range(0, len(indices_tumor_dim1)), 2) for __ in range(2): central_points = [ indices_tumor_dim1[list_of_random_places[__]], indices_tumor_dim2[list_of_random_places[__]] ] current_input_padded, current_output_padded, central_points = check_and_add_zero_padding_2d_image( current_input, current_output, central_points, semi_block_size_input, semi_block_size_input2) list_blocks_segmentation.append( crop_2D_block(current_output_padded, central_points, semi_block_size_output, semi_block_size_output2)) list_blocks_input.append( crop_2D_block(current_input_padded, central_points, semi_block_size_input, semi_block_size_input2)) list_blocks_input = np.stack(list_blocks_input) list_blocks_segmentation = np.stack(list_blocks_segmentation) shape_of_seg = list_blocks_segmentation.shape list_blocks_segmentation = list_blocks_segmentation.reshape((-1, 1)) #list_blocks_segmentation = output_transformation(list_blocks_segmentation) #enc = preprocessing.OneHotEncoder() #enc.fit(list_blocks_segmentation) #list_blocks_segmentation = enc.transform(list_blocks_segmentation).toarray() #list_blocks_segmentation = list_blocks_segmentation.reshape((-1,1)) list_blocks_segmentation = OneHotEncoder(list_blocks_segmentation) list_blocks_segmentation = list_blocks_segmentation.reshape( (shape_of_seg[0], shape_of_seg[1], shape_of_seg[2], dim_output)) return list_blocks_input, list_blocks_segmentation
async def monitor(session): ret = subprocess.getoutput('top -b -n1') fn = ''.join(random.sample(string.ascii_letters + string.digits, 16)) + '.png' draw_image(ret, os.path.join('..', 'data', 'image', fn)) await session.send("[CQ:image,file=" + fn + "]")
from mpl_toolkits.mplot3d import Axes3D import pandas as pd import random import pickle from matplotlib.colors import ListedColormap # load values and pdf values = np.array(np.array(pd.read_pickle("X.p")).T) density = np.array(pd.read_pickle("Y.p")) plot = True if plot: # take k random samples to make runtime manageable k = 10000 indices = random.sample(range(len(density)), k) values = values[:,indices] density = density[indices] density /= max(density) # Make custom colormap so alpha value is 0 at min of range cmap = plt.cm.get_cmap("Greys") alpha_cmap = cmap(np.arange(cmap.N)) alpha_cmap[:,-1] = np.linspace(0, 1, cmap.N) alpha_cmap = ListedColormap(alpha_cmap) fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(16, 16), subplot_kw=dict(projection='3d')) im = axes[0].scatter(*values, c=[d**2 for d in density], cmap=alpha_cmap, marker='.') fig.colorbar(im, ax=axes[0]) axes[0].set_title("Before KDE")
def run(test, params, env): """ Test emulatorpin tuning 1) Positive testing 1.1) get the current emulatorpin parameters for a running/shutoff guest 1.2) set the current emulatorpin parameters for a running/shutoff guest 2) Negative testing 2.1) get emulatorpin parameters for a running/shutoff guest 2.2) set emulatorpin parameters running/shutoff guest """ # Run test case vm_name = params.get("main_vm") vm = env.get_vm(vm_name) cgconfig = params.get("cgconfig", "on") cpulist = params.get("emulatorpin_cpulist") status_error = params.get("status_error", "no") change_parameters = params.get("change_parameters", "no") # Backup original vm vmxml = vm_xml.VMXML.new_from_inactive_dumpxml(vm_name) vmxml_backup = vmxml.copy() emulatorpin_placement = params.get("emulatorpin_placement", "") if emulatorpin_placement: vm.destroy() vmxml.placement = emulatorpin_placement vmxml.sync() vm.start() test_dicts = dict(params) test_dicts['vm'] = vm host_cpus = utils.count_cpus() test_dicts['host_cpus'] = host_cpus cpu_max = int(host_cpus) - 1 cpu_list = None # Assemble cpu list for positive test if status_error == "no": if cpulist is None: pass elif cpulist == "x": cpulist = random.choice(utils.cpu_online_map()) elif cpulist == "x-y": # By default, emulator is pined to all cpus, and element # 'cputune/emulatorpin' may not exist in VM's XML. # And libvirt will do nothing if pin emulator to the same # cpus, that means VM's XML still have that element. # So for testing, we should avoid that value(0-$cpu_max). if cpu_max < 2: cpulist = "0-0" else: cpulist = "0-%s" % (cpu_max - 1) elif cpulist == "x,y": cpulist = ','.join(random.sample(utils.cpu_online_map(), 2)) elif cpulist == "x-y,^z": cpulist = "0-%s,^%s" % (cpu_max, cpu_max) elif cpulist == "-1": cpulist = "-1" elif cpulist == "out_of_max": cpulist = str(cpu_max + 1) else: raise error.TestNAError("CPU-list=%s is not recognized." % cpulist) test_dicts['emulatorpin_cpulist'] = cpulist if cpulist: cpu_list = cpus_parser(cpulist) test_dicts['cpu_list'] = cpu_list logging.debug("CPU list is %s", cpu_list) cg = utils_cgroup.CgconfigService() if cgconfig == "off": if cg.cgconfig_is_running(): cg.cgconfig_stop() # positive and negative testing ######### try: if status_error == "no": if change_parameters == "no": get_emulatorpin_parameter(test_dicts) else: set_emulatorpin_parameter(test_dicts) if status_error == "yes": if change_parameters == "no": get_emulatorpin_parameter(test_dicts) else: set_emulatorpin_parameter(test_dicts) finally: # Recover cgconfig and libvirtd service if not cg.cgconfig_is_running(): cg.cgconfig_start() utils_libvirtd.libvirtd_restart() # Recover vm. vmxml_backup.sync()
def get_shuffled_names(): all_name = ["".join(cs) for cs in itertools.product(*chrsets)] return random.sample(all_name, len(all_name))
def generateInitialSet(choices, k): return random.sample(choices, k)