def load_multiple(participant, series, data_selector=None, shuffle=True): ''' this is a wrapper for load_eeg_emg in order to be able to load more than one person/session at once. for more information look at load_emg_emg :param participant list e.g. [1, 2, 5] :param series list [1, 2, 3, 7] :param data_selector "eeg", "emg" or None (default), if both data should be loaded. :param shuffle determines if data should be shuffled randomly :return: list of dicts of eeg, emg data ''' data = [] for p in participant: download_way_eeg_gal(p) unzip_way_eeg_gal(p) for s in series: data_tmp, eventNames = get_eeg_emg(p, s, data_selector) data = data + data_tmp if shuffle: shuf(data) return data, eventNames
def resetDeck(self): #Initializes deck NewDeck = [EuchreCard(s,r) for s in [SUITS.hearts,SUITS.spades,SUITS.diamonds,SUITS.clubs] for r in [RANKS.nine,RANKS.ten,RANKS.jack,RANKS.queen,RANKS.king,RANKS.ace]] shuf(NewDeck) #Shuffles deck return NewDeck
def iterateOnFold(fold, shuffle=False): global lista nb = 0 lista = os.listdir(fold) global path path = fold if shuffle: shuf(lista) else: lista.sort()
def __getitem__(self, batch_index): """ Generates a batch of correctly shaped X and Y data :param batch_index: index of the batch to generate :return: input dictionary containing: 'the_input': np.ndarray[shape=(batch_size, max_seq_length, mfcc_features)]: input audio data 'the_labels': np.ndarray[shape=(batch_size, max_transcript_length)]: transcription data 'input_length': np.ndarray[shape=(batch_size, 1)]: length of each sequence (numb of frames) in x_data 'label_length': np.ndarray[shape=(batch_size, 1)]: length of each sequence (numb of letters) in y_data output dictionary containing: 'ctc': np.ndarray[shape=(batch_size, 1)]: dummy data for dummy loss function """ # Generate indexes of current batch indexes_in_batch = self.indexes[batch_index * self.batch_size:(batch_index + 1) * self.batch_size] # Shuffle indexes within current batch if shuffle=true if self.shuffle: shuf(indexes_in_batch) # Load audio and transcripts x_data_raw, y_data_raw, sr = load_audio(self.df, indexes_in_batch) # Preprocess and pad data x_data, input_length = self.extract_features_and_pad(x_data_raw, sr) y_data, label_length = convert_and_pad_transcripts(y_data_raw) # print ("\nx_data shape: ", x_data.shape) # print ("y_data shape: ", y_data.shape) # print ("input_length shape: ", input_length.shape) # print ("label_length shape: ", label_length.shape) # print ("input length: ", input_length) # print ("label_length: ", label_length, "\n") inputs = { 'the_input': x_data, 'the_labels': y_data, 'input_length': input_length, 'label_length': label_length } outputs = { 'ctc': np.zeros([self.batch_size]) } # dummy data for dummy loss function return inputs, outputs
def __getitem__(self, batch_index): indices_in_batch = self.indices[batch_index * self.batch_size:(batch_index + 1) * self.batch_size] if self.shuffle: shuf(indices_in_batch) x_data = np.zeros((self.batch_size, self.max_frames, self.feature)) targets = [] paths = self.load_data(indices_in_batch) for count, i in enumerate(paths): frames, label = self.extract_feature(i) self.classes.append(label) targets.append(label) x_data[count] = frames outputs = np.asarray(targets) return x_data, outputs
def shuffle(self): shuf(self.cards)
def shuffle(self): shuf(self)
from random import choice as ch, shuffle as shuf from custom_module import tab, new_line as nl print("I am in: " + __name__) nl() print(ch(["apple", "banana", "cherry", "durian"])) nl() nl() tab() tab() print(shuf(["apple", "banana", "cherry", "durian"]))
model = build_model() model.summary() np.random.seed(312) num_epochs = 5 batch_size = 2 path = 'dataset/train' data_train = [] for r, d, f in os.walk(path): for _f in f: data_train.append(os.path.join(r, _f)) shuf(data_train) data_train = np.asarray(data_train) path = 'dataset/validate' data_validate = [] for r, d, f in os.walk(path): for _f in f: data_validate.append(os.path.join(r, _f)) shuf(data_validate) data_validate = np.asarray(data_validate) path = 'dataset/test' data_test = [] for r, d, f in os.walk(path):
def test_random(self): assert random.random() < 1 assert random.randint(1, 10) in list(range(10)) assert random.choice([1, 3, 5]) in list([1, 3, 5]) # alias to random.shuffle shuf([1, 2, 3]) # shuffles the list, mutable operation