Example #1
0
 def flat_init(self):
     # 无向Graph自动补全
     for i in self.relat.node():
         for j in range(i):
             self.relat.add_weighted_edges_from([
                 (i, j, 0.5 + unif(-0.01, 0.01))
             ])  # 关系初始值和扰动大小
     for i in self.power.node():
         for j in self.power.node():
             self.power.add_weighted_edges_from([(i, j,
                                                  0.5 + unif(-0.01, 0.01))])
Example #2
0
File: lib.py Project: chbrown/dbml
def randproportional(weights):
    """http://eli.thegreenplace.net/2010/01/22/weighted-random-generation-in-python/ -- very clever"""
    threshold = unif() * sum(weights)
    for i, weight in enumerate(weights):
        threshold -= weight
        if threshold <= 0:
            return i
Example #3
0
 def new_flat_init(self):
     # 无向Graph自动补全
     for i in self.relat.node():
         for j in range(i):
             # self.relat.add_weighted_edges_from([(i, j, self.arg['relat_init'])])  #测试稳态用公式
             self.relat.add_weighted_edges_from([
                 (i, j, self.arg['relat_init'] +
                  unif(-self.arg['relat_turb'], self.arg['relat_turb']))
             ])  # 关系初始值和扰动大小
     for i in self.power.node():
         for j in self.power.node():
             if i != j:
                 self.power.add_weighted_edges_from([
                     (i, j, self.arg['power_init'] +
                      unif(-self.arg['power_turb'], self.arg['power_turb']))
                 ])
Example #4
0
 def add_newborn(self):
     """
     add k newborn to queue i of current barn
     """
     k = 0
     free_capacity = self.compute_free_capacity()
     if(free_capacity > 0):
         #if(birth_rate[self.stage_type] != 0):           #check birth_rate for current barn
             k0 = 1 + int(-math.log(unif()) * (birth_rate[self.stage_type] - 1) + 0.5)
            #k=min(poisson.rvs(birth_rate[self.stage_type]),free_capacity)
             k = min( k0 , free_capacity )
             self.Dlist = self.Dlist + [0] * k           #add k newborn to queue i
Example #5
0
File: lib.py Project: chbrown/dbml
def randproportional_mine(distribution):
    # given a list of floats, pick one with probability proportional
    # to the float relative to the other floats. return an int index.
    cumulative = []
    last = 0
    for event in distribution:
        last += event
        cumulative.append(last)
    # cumulative[-1] should equal the sum (=last), now
    uniform = unif() * last
    for i, threshold in enumerate(cumulative):
        if uniform <= threshold:
            return i
Example #6
0
File: baum.py Project: fritzo/art
 def branch (self, Pmore, Pless):
   assert 0<=Pmore and 0<=Pless and Pmore+Pless<=1, "invalid Pmore,Pless"
   prev = self.levels[-1]
   next = []
   for n,i,j in prev:
     n += 1
     w = random.unif(0.0,1.0)
     if w > Pless:
       continue
     if 1-w <= Pmore:
       next.append((n,j,self.new_id()))
       next.append((n,j,self.new_id()))
     else:
       next.append((n,j,j))
     self.levels.append(next)
Example #7
0
def initBidders(size,bidlist,a,b):
  for i in size:
    bidlist.append(random.unif(a,b))
  return (clock,bidlist)
Example #8
0
File: lib.py Project: chbrown/dbml
def randrange(max):
    return int(unif() * max)
Example #9
0
File: ga.py Project: chbrown/dbml
def run(stdscr, debug):
    solvers = repeat(Candidate, solvers_size)
    parasites = repeat(Parasite, parasites_size)

    for iteration in range(iterations):
        trials = [Trial(solver, parasite) for parasite in parasites for solver in solvers]

        by_solver_mistakes = []
        by_solver = []
        for solver, solver_trials in groupby(sorted(trials, key=solver_key), solver_key):
            solver_trials = list(solver_trials)
            total_mistakes = sum(map(mistakes_key, solver_trials))
            total_penalty = sum(map(penalty_key, solver_trials))
            by_solver_mistakes.append((total_mistakes, solver))
            by_solver.append((total_penalty, solver))
            if total_mistakes == 0:
                print
                print "Perfect solver: %r" % solver
                print "  len: %d" % len(solver)
                for trial in solver_trials:
                    print trial.parasite
                    print solver.sort(trial.parasite)
                raise Exception("DONE!")
        # we prefer lower penalties
        # randpenalty(best_solvers)

        by_parasite = []
        for parasite, parasite_trials in groupby(sorted(trials, key=parasite_key), parasite_key):
            total_mistakes = sum(map(mistakes_key, parasite_trials))
            by_parasite.append((total_mistakes, parasite))
        # we prefer higher penalties
        # randproportionalvalue(easiest_parasites)

        best_solvers = sorted(by_solver, key=first_key)
        best_score, best_candidate = best_solvers[0]
        worst_score, worst_candidate = best_solvers[-1]

        if debug and iteration % 10 == 0:
            best_solvers_by_mistakes = sorted(by_solver_mistakes, key=first_key)
            best_mistakes, best_candidate_by_mistakes = best_solvers_by_mistakes[0]
            # worst_score, worst_candidate = best_solvers[-1]
            print "#%5d, mean: %7.2f" % (iteration, mean([score for score, solver in best_solvers]))
            # print '       worst: %3d   (%3d)' % (worst_score, len(worst_candidate.swaps))
            print "        best: %3d - %3.1f (%3d)" % (best_mistakes, best_score, len(best_candidate_by_mistakes))
            # print '              %r' % best_candidate.swaps

            easiest_parasites = sorted(by_parasite, key=first_key)
            hardest_parasite_mistakes, hardest_parasite = easiest_parasites[-1]
            # print ' hardest_parasite: %r' % hardest_parasite.test_values
            # print '            score: %d' % hardest_parasite_mistakes
            # print "   best's attempt: %r" % best_candidate.sort(hardest_parasite)

            # print ' eval seq  %r' % eval_pool_choice
            # print ' best sort %r' % best_candidate.sort(eval_pool_choice)
            # print ' perfect.fitness: %s' % perfect.fitness(eval_pool_choice)
            # print ' perfect sort %r' % perfect.sort(eval_pool_choice)

        next_solvers = []
        # for m in range(best_count)
        reproductions = (solvers_size - solvers_carryover) / 2
        for n in range(reproductions):
            a = randpenalty(by_solver)
            b = randpenalty(by_solver)
            next_solvers += a.crossover(b)

        # these are copied, they are not the originals
        next_solvers += [randpenalty(by_solver).clone() for c in range(solvers_carryover)]

        for solver in next_solvers:
            if unif() < 0.1:
                solver.mutate()

        next_solvers[0] = best_solvers[0][1]

        solvers = next_solvers

        next_parasites = [randproportionalvalue(by_parasite).clone() for p in range(parasites_size)]
        for parasite in next_parasites:
            parasite.mutate()

        parasites = next_parasites

        output.csv(iteration, best_score, len(best_candidate), worst_score, len(worst_candidate))