Example #1
0
folder_name = r"results\experiment-4"

# ==============================================================================
# === train gradient models
rate = 0.02
drift = 0.05

number_of_tests = 2**7
test_drivers = []

for num in range(number_of_tests):
    print(f"dimension {dimension} at test {num + 1} ".ljust(80, "="), end="")
    start = perf_counter()

    volatility = tf.random.uniform((dimension, ), 0.2, 0.3)
    init_instruments, init_numeraire, book = random_books.random_empty_book(
        13 / 52, dimension, rate, drift, volatility, num)
    # random_books.add_butterfly(init_instruments, book, spread=20)
    random_books.add_calls(init_instruments, book)

    warmup_driver = gradient_driver.GradientDriver(
        timesteps=timesteps,
        frequency=0,
        init_instruments=init_instruments,
        init_numeraire=init_numeraire,
        book=book,
        learning_rate_min=1e-7,
        learning_rate_max=1e-2)

    warmup_driver.set_exploration(100.0, 15.0)

    warmup_driver.add_testcase(name="value network",
Example #2
0
import sys
import os

from time import perf_counter

import utils
import derivatives
import random_books
import gradient_models
import gradient_driver
import hedge_models

tf.get_logger().setLevel('ERROR')

timesteps = 13
init_instruments, init_numeraire, book = random_books.random_empty_book(
    timesteps / 52, 1, 0.02, 0.05, 0.2)
init_numeraire = tf.ones_like(init_numeraire)

spread = 10
itm = derivatives.PutCall(book.maturity, init_instruments - spread / 2,
                          book.instrument_simulator.rate,
                          book.instrument_simulator.volatility, 1)
atm = derivatives.PutCall(book.maturity, init_instruments,
                          book.instrument_simulator.rate,
                          book.instrument_simulator.volatility, 1)
otm = derivatives.PutCall(book.maturity, init_instruments + spread / 2,
                          book.instrument_simulator.rate,
                          book.instrument_simulator.volatility, 1)

book.add_derivative(itm, 0, 1)
book.add_derivative(atm, 0, -2)
Example #3
0
volatility = 0.2

train_size, test_size, timesteps = int(2**18), int(2**18), 14
alpha = 0.95
dimension = 1
frequency = 4

units = 15
layers = 4

activation = tf.keras.activations.softplus
num_trials = 8
lst_of_drivers = []
risk_measure = partial(hedge_models.ExpectedShortfall, alpha=alpha)

init_instruments, init_numeraire, book = random_books.random_empty_book(
    timesteps / 250, dimension, rate, drift, volatility, 69)
random_books.add_rko(init_instruments, book, 5)

driver = utils.HedgeDriver(timesteps=timesteps,
                           frequency=frequency,
                           init_instruments=init_instruments,
                           init_numeraire=init_numeraire,
                           book=book,
                           cost=1 / 100 if cost else None,
                           risk_neutral=not cost,
                           learning_rate=1e-1)

driver.add_testcase("deep network",
                    hedge_models.NeuralHedge(
                        timesteps=timesteps,
                        instrument_dim=book.instrument_dim,
Example #4
0
import hedge_models
import sys

# ==============================================================================
# === hyperparameters
train_size, test_size, timesteps = int(2**2), int(2**14), 7
hedge_multiplier = 5 * int(sys.argv[1])
frequency = 0  # only > 0 for continuous, else 0
alpha = 0.95

folder_name = r"figures\delta-pnl-plots"
case_name = "call"

# ==============================================================================
# === sample data
init_instruments, init_numeraire, book = random_books.random_empty_book(
    timesteps / 250, 1, 0.0, 0.05, 0.2, seed=69)  # NOTE timesteps / 52 for DGA

# random_books.add_calls(init_instruments, book)
random_books.add_butterfly(init_instruments, book, 10)
# random_books.add_dga_calls(init_instruments, book)
# random_books.add_rko(init_instruments, book, 10.0)

driver = utils.HedgeDriver(timesteps=timesteps * hedge_multiplier,
                           frequency=frequency,
                           init_instruments=init_instruments,
                           init_numeraire=init_numeraire,
                           book=book,
                           cost=None,
                           risk_neutral=True,
                           learning_rate=1e-1)
Example #5
0
# -*- coding: utf-8 -*-
import tensorflow as tf

import random_books
import utils
import hedge_models
import derivatives

# ==============================================================================
# === hyperparameters
train_size, test_size, timesteps = int(2**10), int(2**20), 30
alpha = 0.95

# ==============================================================================
# === sample data
init_instruments, init_numeraire, book = random_books.random_empty_book(
    1.0, 1, 0.05, 0.1, 0.2, seed=69)
derivative = derivatives.PutCall(book.maturity, 105.0,
                                 book.numeraire_simulator.rate,
                                 book.instrument_simulator.volatility, 1)
book.add_derivative(derivative, 0, 1.0)

driver = utils.HedgeDriver(
    timesteps=timesteps,
    frequency=0,  # no need for frequency
    init_instruments=init_instruments,
    init_numeraire=init_numeraire,
    book=book,
    cost=None,
    risk_neutral=False,
    learning_rate=1e-1)