def test_undirected_pure_geometric_graph_yields_right_adjacency_matrix( self): G, A, D = random_graph_bu.pure_geometric(N=426, N_edges=7804, L=.75, brain_size=[7., 7., 7.]) self.assertEqual(len(G.nodes()), 426) np.testing.assert_array_equal( nx.adjacency_matrix(G).todense().astype(int), A.astype(int))
def test_undirected_pure_geometric_graph_yields_right_adjacency_matrix(self): G, A, D = random_graph_bu.pure_geometric(N=426, N_edges=7804, L=.75, brain_size=[7., 7., 7.]) self.assertEqual(len(G.nodes()), 426) np.testing.assert_array_equal(nx.adjacency_matrix(G).todense().astype(int), A.astype(int))
Gbrain,_,_ = binary_directed() deg_brain = Gbrain.to_undirected().degree().values() N = 100 axs[0].hist(deg_brain,deg_bins,facecolor=config.COLORS['brain'], alpha=0.75,normed=True) leg.append(mlines.Line2D([],[],color=config.COLORS['brain'], linestyle='-',markersize=13,\ label='Connectome',lw=3,alpha=0.75)) for i,L in enumerate(Ls): print 'L = {}'.format(L) degs=[] for k in range(N): print 'repeat {}'.format(k) G,_,_ = pure_geometric(N=bc.num_brain_nodes,N_edges=bc.num_brain_edges_undirected, L=L) G_un = G.to_undirected() cc_dict = nx.clustering(G_un) deg_dict = G_un.degree() cc = [cc_dict[k] for k in range(bc.num_brain_nodes)] deg = [deg_dict[k] for k in range(bc.num_brain_nodes)] degs.extend(deg) [slope,intercept,r,_,_] = stats.linregress(deg,cc) slopes.append(slope) rs.append(r) axs[1].scatter(deg,cc,color=cols[i],marker='o',\ s=markersize,alpha=alpha,lw=0)