def __init__(self): ChoiceParam.__init__( self, name="Activation", choices=[Sigmoid(), Tanh(), ReLU(), SELU()], cprobs=[i / 4 for i in range(1, 5)], is_random=False, )
def __init__(self, **kwargs): _Factory.__init__(self) self.template_fn = namedtuple( "EmbeddingBag", [ "num_embeddings", "embedding_dim", "max_norm", "norm_type", "scale_grad_by_freq", "mode", "sparse", "_weight", ], ) self.params = self.template_fn( num_embeddings=IntParam(name="num_embeddings", default=1), embedding_dim=IntParam(name="embedding_dim", default=1), max_norm=Param(name="max_norm", default=None), norm_type=IntParam(name="norm_type", default=2.0), scale_grad_by_freq=BinaryParam(name="scale_grad_by_freq", default=False, true_prob=0.5), mode=ChoiceParam(name="mode", choices=("mean", ), cprobs=(1, ), default="mean"), sparse=BinaryParam(name="sparse", default=False, true_prob=0.5), _weight=Param(name="_weight", default=None), ) for k, v in kwargs.items(): getattr(self.params, k).val = v
def __init__(self, **kwargs): _Factory.__init__(self) self.template_fn = namedtuple( "ConvTranspose3d", [ "in_channels", "out_channels", "kernel_size", "stride", "padding", "output_padding", "groups", "bias", "dilation", "padding_mode", ], ) self.params = self.template_fn( in_channels=IntParam(name="in_channels", default=1), out_channels=IntParam(name="out_channels", default=1), kernel_size=TupleParam( name="kernel_size", size=3, limits=((1, 1, 1), (1, 1, 1)), default=(1, 1, 1), ), stride=TupleParam( name="stride", size=3, limits=((1, 1, 1), (1, 1, 1)), default=(1, 1, 1) ), padding=TupleParam( name="padding", size=3, limits=((0, 0, 0), (0, 0, 0)), default=(0, 0, 0) ), output_padding=TupleParam( name="output_padding", size=3, limits=((0, 0, 0), (0, 0, 0)), default=(0, 0, 0), ), groups=IntParam(name="groups", default=1), bias=BinaryParam(name="bias", default=True, true_prob=0.5), dilation=TupleParam( name="dilation", size=3, limits=((1, 1, 1), (1, 1, 1)), default=(1, 1, 1), ), padding_mode=ChoiceParam( name="padding_mode", choices=("zeros",), cprobs=(1,), default="zeros" ), ) for k, v in kwargs.items(): getattr(self.params, k).val = v
def __init__(self, **kwargs): _Factory.__init__(self) self.template_fn = namedtuple("MultiLabelMarginLoss", ["size_average", "reduce", "reduction"]) self.params = self.template_fn( size_average=Param(name="size_average", default=None), reduce=Param(name="reduce", default=None), reduction=ChoiceParam(name="reduction", choices=("mean", ), cprobs=(1, ), default="mean"), ) for k, v in kwargs.items(): getattr(self.params, k).val = v
def __init__(self, **kwargs): _Factory.__init__(self) self.template_fn = namedtuple( "RNNCell", ["input_size", "hidden_size", "bias", "nonlinearity"]) self.params = self.template_fn( input_size=IntParam(name="input_size", default=1), hidden_size=Param(name="hidden_size", default=None), bias=BinaryParam(name="bias", default=True, true_prob=0.5), nonlinearity=ChoiceParam(name="nonlinearity", choices=("tanh", ), cprobs=(1, ), default="tanh"), ) for k, v in kwargs.items(): getattr(self.params, k).val = v
def __init__(self, **kwargs): _Factory.__init__(self) self.template_fn = namedtuple( "Upsample", ["size", "scale_factor", "mode", "align_corners"]) self.params = self.template_fn( size=Param(name="size", default=None), scale_factor=IntParam(name="scale_factor", default=1), mode=ChoiceParam(name="mode", choices=("nearest", ), cprobs=(1, ), default="nearest"), align_corners=Param(name="align_corners", default=None), ) for k, v in kwargs.items(): getattr(self.params, k).val = v
def __init__(self, **kwargs): _Factory.__init__(self) self.template_fn = namedtuple("CTCLoss", ["blank", "reduction", "zero_infinity"]) self.params = self.template_fn( blank=IntParam(name="blank", default=0), reduction=ChoiceParam(name="reduction", choices=("mean", ), cprobs=(1, ), default="mean"), zero_infinity=BinaryParam(name="zero_infinity", default=False, true_prob=0.5), ) for k, v in kwargs.items(): getattr(self.params, k).val = v
def __init__(self, **kwargs): _Factory.__init__(self) self.template_fn = namedtuple( "CosineEmbeddingLoss", ["margin", "size_average", "reduce", "reduction"]) self.params = self.template_fn( margin=IntParam(name="margin", default=0.0), size_average=Param(name="size_average", default=None), reduce=Param(name="reduce", default=None), reduction=ChoiceParam(name="reduction", choices=("mean", ), cprobs=(1, ), default="mean"), ) for k, v in kwargs.items(): getattr(self.params, k).val = v
def __init__(self, **kwargs): _Factory.__init__(self) self.template_fn = namedtuple( "NLLLoss", ["weight", "size_average", "ignore_index", "reduce", "reduction"]) self.params = self.template_fn( weight=Param(name="weight", default=None), size_average=Param(name="size_average", default=None), ignore_index=IntParam(name="ignore_index", default=-100), reduce=Param(name="reduce", default=None), reduction=ChoiceParam(name="reduction", choices=("mean", ), cprobs=(1, ), default="mean"), ) for k, v in kwargs.items(): getattr(self.params, k).val = v
def __init__(self, **kwargs): _Factory.__init__(self) self.template_fn = namedtuple( "TransformerDecoderLayer", ['d_model', 'nhead', 'dim_feedforward', 'dropout', 'activation']) self.params = self.template_fn( d_model=Param(name="d_model", default=None), nhead=Param(name="nhead", default=None), dim_feedforward=IntParam(name="dim_feedforward", default=2048), dropout=FloatParam(name="dropout", default=0.1), activation=ChoiceParam(name="activation", choices=("relu", ), cprobs=(1, ), default="relu"), ) for k, v in kwargs.items(): getattr(self.params, k).val = v
def __init__(self, **kwargs): _Factory.__init__(self) self.template_fn = namedtuple( "BCEWithLogitsLoss", ["weight", "size_average", "reduce", "reduction", "pos_weight"], ) self.params = self.template_fn( weight=Param(name="weight", default=None), size_average=Param(name="size_average", default=None), reduce=Param(name="reduce", default=None), reduction=ChoiceParam(name="reduction", choices=("mean", ), cprobs=(1, ), default="mean"), pos_weight=Param(name="pos_weight", default=None), ) for k, v in kwargs.items(): getattr(self.params, k).val = v
def __init__(self, **kwargs): _Factory.__init__(self) self.template_fn = namedtuple( "MultiMarginLoss", ["p", "margin", "weight", "size_average", "reduce", "reduction"], ) self.params = self.template_fn( p=IntParam(name="p", default=1), margin=IntParam(name="margin", default=1.0), weight=Param(name="weight", default=None), size_average=Param(name="size_average", default=None), reduce=Param(name="reduce", default=None), reduction=ChoiceParam(name="reduction", choices=("mean", ), cprobs=(1, ), default="mean"), ) for k, v in kwargs.items(): getattr(self.params, k).val = v
def __init__(self, **kwargs): _Factory.__init__(self) self.template_fn = namedtuple( "TripletMarginLoss", [ "margin", "p", "eps", "swap", "size_average", "reduce", "reduction" ], ) self.params = self.template_fn( margin=IntParam(name="margin", default=1.0), p=IntParam(name="p", default=2.0), eps=FloatParam(name="eps", default=1e-06), swap=BinaryParam(name="swap", default=False, true_prob=0.5), size_average=Param(name="size_average", default=None), reduce=Param(name="reduce", default=None), reduction=ChoiceParam(name="reduction", choices=("mean", ), cprobs=(1, ), default="mean"), ) for k, v in kwargs.items(): getattr(self.params, k).val = v
def __init__(self, **kwargs): _Factory.__init__(self) self.template_fn = namedtuple( "PoissonNLLLoss", [ "log_input", "full", "size_average", "eps", "reduce", "reduction" ], ) self.params = self.template_fn( log_input=BinaryParam(name="log_input", default=True, true_prob=0.5), full=BinaryParam(name="full", default=False, true_prob=0.5), size_average=Param(name="size_average", default=None), eps=FloatParam(name="eps", default=1e-08), reduce=Param(name="reduce", default=None), reduction=ChoiceParam(name="reduction", choices=("mean", ), cprobs=(1, ), default="mean"), ) for k, v in kwargs.items(): getattr(self.params, k).val = v