Example #1
0
 def __init__(self, **kwargs):
     _Factory.__init__(self)
     self.template_fn = namedtuple(
         "RNNBase",
         [
             "mode",
             "input_size",
             "hidden_size",
             "num_layers",
             "bias",
             "batch_first",
             "dropout",
             "bidirectional",
         ],
     )
     self.params = self.template_fn(
         mode=Param(name="mode", default=None),
         input_size=IntParam(name="input_size", default=1),
         hidden_size=Param(name="hidden_size", default=None),
         num_layers=IntParam(name="num_layers", default=1),
         bias=BinaryParam(name="bias", default=True, true_prob=0.5),
         batch_first=BinaryParam(name="batch_first",
                                 default=False,
                                 true_prob=0.5),
         dropout=IntParam(name="dropout", default=0.0),
         bidirectional=BinaryParam(name="bidirectional",
                                   default=False,
                                   true_prob=0.5),
     )
     for k, v in kwargs.items():
         getattr(self.params, k).val = v
Example #2
0
 def __init__(self, **kwargs):
     _Factory.__init__(self)
     self.template_fn = namedtuple(
         "EmbeddingBag",
         [
             "num_embeddings",
             "embedding_dim",
             "max_norm",
             "norm_type",
             "scale_grad_by_freq",
             "mode",
             "sparse",
             "_weight",
         ],
     )
     self.params = self.template_fn(
         num_embeddings=IntParam(name="num_embeddings", default=1),
         embedding_dim=IntParam(name="embedding_dim", default=1),
         max_norm=Param(name="max_norm", default=None),
         norm_type=IntParam(name="norm_type", default=2.0),
         scale_grad_by_freq=BinaryParam(name="scale_grad_by_freq",
                                        default=False,
                                        true_prob=0.5),
         mode=ChoiceParam(name="mode",
                          choices=("mean", ),
                          cprobs=(1, ),
                          default="mean"),
         sparse=BinaryParam(name="sparse", default=False, true_prob=0.5),
         _weight=Param(name="_weight", default=None),
     )
     for k, v in kwargs.items():
         getattr(self.params, k).val = v
Example #3
0
 def __init__(self, **kwargs):
     _Factory.__init__(self)
     self.template_fn = namedtuple(
         "FractionalMaxPool3d",
         [
             "kernel_size",
             "output_size",
             "output_ratio",
             "return_indices",
             "_random_samples",
         ],
     )
     self.params = self.template_fn(
         kernel_size=TupleParam(
             name="kernel_size",
             size=3,
             limits=((1, 1, 1), (1, 1, 1)),
             default=(1, 1, 1),
         ),
         output_size=TupleParam(name="output_size",
                                size=3,
                                default=(1, 1, 1)),
         output_ratio=Param(name="output_ratio", default=None),
         return_indices=BinaryParam(name="return_indices",
                                    default=False,
                                    true_prob=0.5),
         _random_samples=Param(name="_random_samples", default=None),
     )
     for k, v in kwargs.items():
         getattr(self.params, k).val = v
Example #4
0
 def __init__(self, **kwargs):
     _Factory.__init__(self)
     self.template_fn = namedtuple(
         "SyncBatchNorm",
         [
             "num_features",
             "eps",
             "momentum",
             "affine",
             "track_running_stats",
             "process_group",
         ],
     )
     self.params = self.template_fn(
         num_features=Param(name="num_features", default=None),
         eps=FloatParam(name="eps", default=1e-05),
         momentum=FloatParam(name="momentum", default=0.1),
         affine=BinaryParam(name="affine", default=False, true_prob=0.5),
         track_running_stats=BinaryParam(name="track_running_stats",
                                         default=False,
                                         true_prob=0.5),
         process_group=Param(name="process_group", default=None),
     )
     for k, v in kwargs.items():
         getattr(self.params, k).val = v
Example #5
0
 def __init__(self, **kwargs):
     _Factory.__init__(self)
     self.template_fn = namedtuple(
         "MultiheadAttention",
         [
             "embed_dim",
             "num_heads",
             "dropout",
             "bias",
             "add_bias_kv",
             "add_zero_attn",
             "kdim",
             "vdim",
         ],
     )
     self.params = self.template_fn(
         embed_dim=Param(name="embed_dim", default=None),
         num_heads=Param(name="num_heads", default=None),
         dropout=IntParam(name="dropout", default=0.0),
         bias=BinaryParam(name="bias", default=True, true_prob=0.5),
         add_bias_kv=BinaryParam(name="add_bias_kv",
                                 default=False,
                                 true_prob=0.5),
         add_zero_attn=BinaryParam(name="add_zero_attn",
                                   default=False,
                                   true_prob=0.5),
         kdim=Param(name="kdim", default=None),
         vdim=Param(name="vdim", default=None),
     )
     for k, v in kwargs.items():
         getattr(self.params, k).val = v
Example #6
0
 def __init__(self, **kwargs):
     _Factory.__init__(self)
     self.template_fn = namedtuple("Threshold",
                                   ["threshold", "value", "inplace"])
     self.params = self.template_fn(
         threshold=Param(name="threshold", default=None),
         value=Param(name="value", default=None),
         inplace=BinaryParam(name="inplace", default=False, true_prob=0.5),
     )
     for k, v in kwargs.items():
         getattr(self.params, k).val = v
Example #7
0
 def __init__(self, **kwargs):
     _Factory.__init__(self)
     self.template_fn = namedtuple("TransformerEncoder",
                                   ['encoder_layer', 'num_layers', 'norm'])
     self.params = self.template_fn(
         encoder_layer=Param(name="encoder_layer", default=None),
         num_layers=Param(name="num_layers", default=None),
         norm=Param(name="norm", default=None),
     )
     for k, v in kwargs.items():
         getattr(self.params, k).val = v
Example #8
0
 def __init__(self, **kwargs):
     _Factory.__init__(self)
     self.template_fn = namedtuple(
         "RNNCellBase", ["input_size", "hidden_size", "bias", "num_chunks"])
     self.params = self.template_fn(
         input_size=IntParam(name="input_size", default=1),
         hidden_size=Param(name="hidden_size", default=None),
         bias=Param(name="bias", default=None),
         num_chunks=Param(name="num_chunks", default=None),
     )
     for k, v in kwargs.items():
         getattr(self.params, k).val = v
Example #9
0
 def __init__(self, **kwargs):
     _Factory.__init__(self)
     self.template_fn = namedtuple(
         "GroupNorm", ["num_groups", "num_channels", "eps", "affine"])
     self.params = self.template_fn(
         num_groups=Param(name="num_groups", default=None),
         num_channels=Param(name="num_channels", default=None),
         eps=FloatParam(name="eps", default=1e-05),
         affine=BinaryParam(name="affine", default=False, true_prob=0.5),
     )
     for k, v in kwargs.items():
         getattr(self.params, k).val = v
Example #10
0
 def __init__(self, **kwargs):
     _Factory.__init__(self)
     self.template_fn = namedtuple(
         "Hardtanh",
         ["min_val", "max_val", "inplace", "min_value", "max_value"])
     self.params = self.template_fn(
         min_val=IntParam(name="min_val", default=-1.0),
         max_val=IntParam(name="max_val", default=1.0),
         inplace=BinaryParam(name="inplace", default=False, true_prob=0.5),
         min_value=Param(name="min_value", default=None),
         max_value=Param(name="max_value", default=None),
     )
     for k, v in kwargs.items():
         getattr(self.params, k).val = v
Example #11
0
 def __init__(self, **kwargs):
     _Factory.__init__(self)
     self.template_fn = namedtuple("MultiLabelMarginLoss",
                                   ["size_average", "reduce", "reduction"])
     self.params = self.template_fn(
         size_average=Param(name="size_average", default=None),
         reduce=Param(name="reduce", default=None),
         reduction=ChoiceParam(name="reduction",
                               choices=("mean", ),
                               cprobs=(1, ),
                               default="mean"),
     )
     for k, v in kwargs.items():
         getattr(self.params, k).val = v
Example #12
0
 def __init__(self, **kwargs):
     _Factory.__init__(self)
     self.template_fn = namedtuple(
         "Upsample", ["size", "scale_factor", "mode", "align_corners"])
     self.params = self.template_fn(
         size=Param(name="size", default=None),
         scale_factor=IntParam(name="scale_factor", default=1),
         mode=ChoiceParam(name="mode",
                          choices=("nearest", ),
                          cprobs=(1, ),
                          default="nearest"),
         align_corners=Param(name="align_corners", default=None),
     )
     for k, v in kwargs.items():
         getattr(self.params, k).val = v
Example #13
0
 def __init__(self, **kwargs):
     _Factory.__init__(self)
     self.template_fn = namedtuple(
         "AdaptiveLogSoftmaxWithLoss",
         ["in_features", "n_classes", "cutoffs", "div_value", "head_bias"],
     )
     self.params = self.template_fn(
         in_features=IntParam(name="in_features", default=1),
         n_classes=Param(name="n_classes", default=None),
         cutoffs=Param(name="cutoffs", default=None),
         div_value=IntParam(name="div_value", default=4.0),
         head_bias=BinaryParam(name="head_bias", default=False, true_prob=0.5),
     )
     for k, v in kwargs.items():
         getattr(self.params, k).val = v
Example #14
0
 def __init__(self, **kwargs):
     _Factory.__init__(self)
     self.template_fn = namedtuple(
         "CosineEmbeddingLoss",
         ["margin", "size_average", "reduce", "reduction"])
     self.params = self.template_fn(
         margin=IntParam(name="margin", default=0.0),
         size_average=Param(name="size_average", default=None),
         reduce=Param(name="reduce", default=None),
         reduction=ChoiceParam(name="reduction",
                               choices=("mean", ),
                               cprobs=(1, ),
                               default="mean"),
     )
     for k, v in kwargs.items():
         getattr(self.params, k).val = v
Example #15
0
 def __init__(self, **kwargs):
     _Factory.__init__(self)
     self.template_fn = namedtuple(
         "TransformerDecoderLayer",
         ['d_model', 'nhead', 'dim_feedforward', 'dropout', 'activation'])
     self.params = self.template_fn(
         d_model=Param(name="d_model", default=None),
         nhead=Param(name="nhead", default=None),
         dim_feedforward=IntParam(name="dim_feedforward", default=2048),
         dropout=FloatParam(name="dropout", default=0.1),
         activation=ChoiceParam(name="activation",
                                choices=("relu", ),
                                cprobs=(1, ),
                                default="relu"),
     )
     for k, v in kwargs.items():
         getattr(self.params, k).val = v
Example #16
0
 def __init__(self, **kwargs):
     _Factory.__init__(self)
     self.template_fn = namedtuple(
         "NLLLoss",
         ["weight", "size_average", "ignore_index", "reduce", "reduction"])
     self.params = self.template_fn(
         weight=Param(name="weight", default=None),
         size_average=Param(name="size_average", default=None),
         ignore_index=IntParam(name="ignore_index", default=-100),
         reduce=Param(name="reduce", default=None),
         reduction=ChoiceParam(name="reduction",
                               choices=("mean", ),
                               cprobs=(1, ),
                               default="mean"),
     )
     for k, v in kwargs.items():
         getattr(self.params, k).val = v
Example #17
0
 def __init__(self, **kwargs):
     _Factory.__init__(self)
     self.template_fn = namedtuple(
         "BCEWithLogitsLoss",
         ["weight", "size_average", "reduce", "reduction", "pos_weight"],
     )
     self.params = self.template_fn(
         weight=Param(name="weight", default=None),
         size_average=Param(name="size_average", default=None),
         reduce=Param(name="reduce", default=None),
         reduction=ChoiceParam(name="reduction",
                               choices=("mean", ),
                               cprobs=(1, ),
                               default="mean"),
         pos_weight=Param(name="pos_weight", default=None),
     )
     for k, v in kwargs.items():
         getattr(self.params, k).val = v
Example #18
0
 def __init__(self, **kwargs):
     _Factory.__init__(self)
     self.template_fn = namedtuple(
         "MultiMarginLoss",
         ["p", "margin", "weight", "size_average", "reduce", "reduction"],
     )
     self.params = self.template_fn(
         p=IntParam(name="p", default=1),
         margin=IntParam(name="margin", default=1.0),
         weight=Param(name="weight", default=None),
         size_average=Param(name="size_average", default=None),
         reduce=Param(name="reduce", default=None),
         reduction=ChoiceParam(name="reduction",
                               choices=("mean", ),
                               cprobs=(1, ),
                               default="mean"),
     )
     for k, v in kwargs.items():
         getattr(self.params, k).val = v
Example #19
0
 def __init__(self, **kwargs):
     _Factory.__init__(self)
     self.template_fn = namedtuple("UpsamplingBilinear2d",
                                   ["size", "scale_factor"])
     self.params = self.template_fn(
         size=Param(name="size", default=None),
         scale_factor=IntParam(name="scale_factor", default=1),
     )
     for k, v in kwargs.items():
         getattr(self.params, k).val = v
Example #20
0
 def __init__(self, **kwargs):
     _Factory.__init__(self)
     self.template_fn = namedtuple("GRUCell",
                                   ["input_size", "hidden_size", "bias"])
     self.params = self.template_fn(
         input_size=IntParam(name="input_size", default=1),
         hidden_size=Param(name="hidden_size", default=None),
         bias=BinaryParam(name="bias", default=True, true_prob=0.5),
     )
     for k, v in kwargs.items():
         getattr(self.params, k).val = v
Example #21
0
 def __init__(self, **kwargs):
     _Factory.__init__(self)
     self.template_fn = namedtuple(
         "Unfold", ["kernel_size", "dilation", "padding", "stride"])
     self.params = self.template_fn(
         kernel_size=Param(name="kernel_size", default=None),
         dilation=IntParam(name="dilation", default=1),
         padding=IntParam(name="padding", default=0),
         stride=IntParam(name="stride", default=1),
     )
     for k, v in kwargs.items():
         getattr(self.params, k).val = v
Example #22
0
 def __init__(self, **kwargs):
     _Factory.__init__(self)
     self.template_fn = namedtuple("CrossMapLRN2d",
                                   ["size", "alpha", "beta", "k"])
     self.params = self.template_fn(
         size=Param(name="size", default=None),
         alpha=FloatParam(name="alpha", default=0.0001),
         beta=FloatParam(name="beta", default=0.75),
         k=IntParam(name="k", default=1),
     )
     for k, v in kwargs.items():
         getattr(self.params, k).val = v
Example #23
0
 def __init__(self, **kwargs):
     _Factory.__init__(self)
     self.template_fn = namedtuple(
         "LayerNorm", ["normalized_shape", "eps", "elementwise_affine"])
     self.params = self.template_fn(
         normalized_shape=Param(name="normalized_shape", default=None),
         eps=FloatParam(name="eps", default=1e-05),
         elementwise_affine=BinaryParam(name="elementwise_affine",
                                        default=False,
                                        true_prob=0.5),
     )
     for k, v in kwargs.items():
         getattr(self.params, k).val = v
Example #24
0
 def __init__(self, **kwargs):
     _Factory.__init__(self)
     self.template_fn = namedtuple(
         "TripletMarginLoss",
         [
             "margin", "p", "eps", "swap", "size_average", "reduce",
             "reduction"
         ],
     )
     self.params = self.template_fn(
         margin=IntParam(name="margin", default=1.0),
         p=IntParam(name="p", default=2.0),
         eps=FloatParam(name="eps", default=1e-06),
         swap=BinaryParam(name="swap", default=False, true_prob=0.5),
         size_average=Param(name="size_average", default=None),
         reduce=Param(name="reduce", default=None),
         reduction=ChoiceParam(name="reduction",
                               choices=("mean", ),
                               cprobs=(1, ),
                               default="mean"),
     )
     for k, v in kwargs.items():
         getattr(self.params, k).val = v
Example #25
0
 def __init__(self, **kwargs):
     _Factory.__init__(self)
     self.template_fn = namedtuple(
         "PoissonNLLLoss",
         [
             "log_input", "full", "size_average", "eps", "reduce",
             "reduction"
         ],
     )
     self.params = self.template_fn(
         log_input=BinaryParam(name="log_input",
                               default=True,
                               true_prob=0.5),
         full=BinaryParam(name="full", default=False, true_prob=0.5),
         size_average=Param(name="size_average", default=None),
         eps=FloatParam(name="eps", default=1e-08),
         reduce=Param(name="reduce", default=None),
         reduction=ChoiceParam(name="reduction",
                               choices=("mean", ),
                               cprobs=(1, ),
                               default="mean"),
     )
     for k, v in kwargs.items():
         getattr(self.params, k).val = v
Example #26
0
 def __init__(self, **kwargs):
     _Factory.__init__(self)
     self.template_fn = namedtuple(
         "RNNCell", ["input_size", "hidden_size", "bias", "nonlinearity"])
     self.params = self.template_fn(
         input_size=IntParam(name="input_size", default=1),
         hidden_size=Param(name="hidden_size", default=None),
         bias=BinaryParam(name="bias", default=True, true_prob=0.5),
         nonlinearity=ChoiceParam(name="nonlinearity",
                                  choices=("tanh", ),
                                  cprobs=(1, ),
                                  default="tanh"),
     )
     for k, v in kwargs.items():
         getattr(self.params, k).val = v
Example #27
0
 def __init__(self, **kwargs):
     _Factory.__init__(self)
     self.template_fn = namedtuple(
         "LPPool2d", ["norm_type", "kernel_size", "stride", "ceil_mode"])
     self.params = self.template_fn(
         norm_type=Param(name="norm_type", default=None),
         kernel_size=TupleParam(name="kernel_size",
                                size=2,
                                limits=((1, 1), (1, 1)),
                                default=(1, 1)),
         stride=TupleParam(name="stride",
                           size=2,
                           limits=((1, 1), (1, 1)),
                           default=(1, 1)),
         ceil_mode=BinaryParam(name="ceil_mode",
                               default=False,
                               true_prob=0.5),
     )
     for k, v in kwargs.items():
         getattr(self.params, k).val = v
Example #28
0
 def __init__(self, **kwargs):
     _Factory.__init__(self)
     self.template_fn = namedtuple(
         "AvgPool3d",
         [
             "kernel_size",
             "stride",
             "padding",
             "ceil_mode",
             "count_include_pad",
             "divisor_override",
         ],
     )
     self.params = self.template_fn(
         kernel_size=TupleParam(
             name="kernel_size",
             size=3,
             limits=((1, 1, 1), (1, 1, 1)),
             default=(1, 1, 1),
         ),
         stride=TupleParam(name="stride",
                           size=3,
                           limits=((1, 1, 1), (1, 1, 1)),
                           default=(1, 1, 1)),
         padding=TupleParam(name="padding",
                            size=3,
                            limits=((0, 0, 0), (0, 0, 0)),
                            default=(0, 0, 0)),
         ceil_mode=BinaryParam(name="ceil_mode",
                               default=False,
                               true_prob=0.5),
         count_include_pad=BinaryParam(name="count_include_pad",
                                       default=True,
                                       true_prob=0.5),
         divisor_override=Param(name="divisor_override", default=None),
     )
     for k, v in kwargs.items():
         getattr(self.params, k).val = v
Example #29
0
 def __init__(self, **kwargs):
     _Factory.__init__(self)
     self.template_fn = namedtuple("LogSoftmax", ["dim"])
     self.params = self.template_fn(dim=Param(name="dim", default=None))
     for k, v in kwargs.items():
         getattr(self.params, k).val = v