def testHistProbabilisticInterleaveWithoutMarginalization(self): r1 = ProbabilisticRankingFunction(3, self.weights_1) r2 = ProbabilisticRankingFunction(3, self.weights_2) hpiIs = HistProbabilisticInterleave("--biased False " "--marginalize False") # test get_probability_of_list_and_assignment p = hpiIs._get_probability_of_list_and_assignment([1, 3, 2, 0], [0, 0, 0, 0], r1, r2, self.query) self.assertAlmostEqual(p, 0.026261, 6, "Most likely list for ranker 1." " p = %e" % p) # test overall outcomes a = ([0, 1, 1, 0], r1, r2) self.assertEqual( hpiIs.infer_outcome([0, 1, 2, 3], a, [0, 0, 0, 0], r1, r2, self.query), 0, "No clicks, outcome should be 0.") o = hpiIs.infer_outcome([1, 0, 3, 2], a, [1, 0, 0, 0], r1, r2, self.query) self.assertEquals( o, -1, "Same original and target pair. " "Ranker 1 should win (o = %d)." % o) test_r1 = ProbabilisticRankingFunction(3, self.weights_1) a = ([0, 1, 1, 0], r1, test_r1) o = hpiIs.infer_outcome([1, 0, 3, 2], a, [1, 0, 0, 0], r2, r1, self.query) self.assertAlmostEquals( o, -0.1250, 4, "Different original pair. " "Ranker 1 should win (o = %.4f)." % o)
def testHistProbabilisticInterleave(self): r1 = ProbabilisticRankingFunction(3, self.weights_1) r2 = ProbabilisticRankingFunction(3, self.weights_2) hpi = HistProbabilisticInterleave(None) a = ([0, 1, 1, 0], r1, r2) self.assertEqual( hpi.infer_outcome([0, 1, 2, 3], a, [0, 0, 0, 0], r1, r2, self.query), 0, "No clicks, outcome should be 0.") o = hpi.infer_outcome([1, 0, 3, 2], a, [1, 0, 0, 0], r1, r2, self.query) self.assertAlmostEquals( o, -0.0486, 4, "Same target as original " "rankers. Ranker 1 should win (o = %.4f)." % o) o = hpi.infer_outcome([1, 0, 3, 2], a, [1, 0, 0, 0], r2, r1, self.query) self.assertAlmostEquals( o, 0.0486, 4, "Target rankers switched. " "Ranker 2 should win (o = %.4f)." % o) test_r1 = ProbabilisticRankingFunction(3, self.weights_1) a = ([0, 1, 1, 0], r1, test_r1) o = hpi.infer_outcome([1, 0, 3, 2], a, [1, 0, 0, 0], r2, r1, self.query) self.assertAlmostEquals( o, 0.1542, 4, "Same original ranker. " "Ranker 2 should win (o = %.4f)." % o)
def testInferOutcomeUnbiased(self): r1 = ProbabilisticRankingFunction(1, self.weights_1) r2 = ProbabilisticRankingFunction(1, self.weights_2) epi = ExploitativeProbabilisticInterleave("--exploration_rate=0.1") outcome = epi.infer_outcome([1, 0, 3, 2], (None, r1, r2), [0, 1, 0, 0], self.query) self.assertAlmostEquals(0.03581, outcome, 8, "Obtained outcome = %.8f" % outcome)
def testGetSourceProbabilityOfList(self): r1 = ProbabilisticRankingFunction(1, self.weights_1) r2 = ProbabilisticRankingFunction(1, self.weights_2) # with exploration rate 0.5 epi = ExploitativeProbabilisticInterleave("--exploration_rate=0.5") p = epi._get_source_probability_of_list([1, 0, 3, 2], (None, r1, r2), self.query) self.assertAlmostEquals(0.090916137, p, 8, "Obtained p = %.g" % p) # with exploration rate 0.1 epi = ExploitativeProbabilisticInterleave("--exploration_rate=0.1") p = epi._get_source_probability_of_list([1, 0, 3, 2], (None, r1, r2), self.query) self.assertAlmostEquals(0.073751736, p, 8, "Obtained p = %.g" % p)
def testExploitativeProbabilisticInterleaveInterleave(self): r1 = ProbabilisticRankingFunction(1, self.weights_1) r2 = ProbabilisticRankingFunction(1, self.weights_2) epi = ExploitativeProbabilisticInterleave("--exploration_rate=0.5") r1.init_ranking(self.query) r2.init_ranking(self.query) (l, (r1_ret, r2_ret)) = epi.interleave(r1, r2, self.query, 4) self.assertEqual(r1, r1_ret, "r1 is just passed through.") self.assertEqual(r2, r2_ret, "r2 is just passed through.") self.assertEqual(len(l), 4, "interleave produces a list of length 4.") self.assertTrue(0 in l, "document 0 is in l.") self.assertTrue(1 in l, "document 0 is in l.") self.assertTrue(2 in l, "document 0 is in l.") self.assertTrue(3 in l, "document 0 is in l.") observed_l = {} for _ in range(0, 100): (l, (r1_ret, r2_ret)) = epi.interleave(r1, r2, self.query, 4) l_str = " ".join([str(docid) for docid in l]) if not l_str in observed_l: observed_l[l_str] = 1 else: observed_l[l_str] += 1 self.assertIn("0 1 2 3", observed_l, "List was observed: 0 1 2 3.") self.assertIn("1 0 3 2", observed_l, "List was observed: 0 1 2 3.") self.assertIn("3 1 2 0", observed_l, "List was observed: 0 1 2 3.") self.assertIn("2 1 0 3", observed_l, "List was observed: 0 1 2 3.")
def testExploitativeProbabilisticInterleave(self): r1 = ProbabilisticRankingFunction(1, self.weights_1) r2 = ProbabilisticRankingFunction(1, self.weights_2) r1.init_ranking(self.query) r2.init_ranking(self.query) epi = ExploitativeProbabilisticInterleave("--exploration_rate=0.5") (docids, probs) = epi._get_document_distribution(r1, r2) exp_docids = [1, 0, 3, 2] exp_probs = [0.36, 0.3, 0.2, 0.14] self._prob_doc_test_helper(docids, exp_docids, probs, exp_probs)
def testExploitativeProbabilisticInterleaveExploit(self): r1 = ProbabilisticRankingFunction(1, self.weights_1) r2 = ProbabilisticRankingFunction(1, self.weights_2) # exploration rate = 0.1 epi = ExploitativeProbabilisticInterleave("--exploration_rate=0.1") r1.init_ranking(self.query) r2.init_ranking(self.query) (docids, probs) = epi._get_document_distribution(r1, r2) exp_docids = [1, 3, 2, 0] exp_probs = [0.456, 0.232, 0.156, 0.156] self._prob_doc_test_helper(docids, exp_docids, probs, exp_probs) # exploration rate = 0.0 epi = ExploitativeProbabilisticInterleave("--exploration_rate=0.0") r1.init_ranking(self.query) r2.init_ranking(self.query) (docids, probs) = epi._get_document_distribution(r1, r2) exp_docids = [1, 3, 2, 0] exp_probs = [0.48, 0.24, 0.16, 0.12] self._prob_doc_test_helper(docids, exp_docids, probs, exp_probs)
def testExploitativeProbabilisticInterleaveTwoDocs(self): # prepare rankers r1 = ProbabilisticRankingFunction(1, self.weights_1) r2 = ProbabilisticRankingFunction(1, self.weights_2) r1.init_ranking(self.query) r2.init_ranking(self.query) r1.rm_document(1) r2.rm_document(1) r1.rm_document(3) r2.rm_document(3) # test after 1 and 3 were removed epi = ExploitativeProbabilisticInterleave("--exploration_rate=0.5") (docids, probs) = epi._get_document_distribution(r1, r2) exp_docids = [0, 2] exp_probs = [0.61428571, 0.38571429] self._prob_doc_test_helper(docids, exp_docids, probs, exp_probs)
def testExploitativeProbabilisticInterleaveThreeDocs(self): epi = ExploitativeProbabilisticInterleave("--exploration_rate=0.5") # prepare rankers r1 = ProbabilisticRankingFunction(1, self.weights_1) r2 = ProbabilisticRankingFunction(1, self.weights_2) r1.init_ranking(self.query) r2.init_ranking(self.query) r1.rm_document(0) r2.rm_document(0) # test after document 0 was removed (docids, probs) = epi._get_document_distribution(r1, r2) exp_docids = [1, 3, 2] exp_probs = [0.5034965, 0.29020979, 0.20629371] self._prob_doc_test_helper(docids, exp_docids, probs, exp_probs) # prepare rankers r1.init_ranking(self.query) r2.init_ranking(self.query) r1.rm_document(3) r2.rm_document(3) # test after document 3 was removed (docids, probs) = epi._get_document_distribution(r1, r2) exp_docids = [1, 0, 2] exp_probs = [0.45864662, 0.36466165, 0.17669173] self._prob_doc_test_helper(docids, exp_docids, probs, exp_probs)
def testProbabilisticInterleave(self): pi = ProbabilisticInterleave(None) r1 = ProbabilisticRankingFunction(3, self.weights_1) r2 = ProbabilisticRankingFunction(3, self.weights_2) context = (None, r1, r2) # test get_probability_of_list p = pi.get_probability_of_list([1, 0, 3, 2], context, self.query) self.assertAlmostEquals( p, 0.182775, 6, "Probability of the most " "likely list. p = %.6f" % p) # test a few possible interleavings test_lists = { "0,1,2,3": 0, "0,1,3,2": 0, "0,2,1,3": 0, "0,2,3,1": 0, "0,3,1,2": 0, "0,3,2,1": 0, "1,0,2,3": 0, "1,0,3,2": 0, "1,2,0,3": 0, "1,2,3,0": 0, "1,3,0,2": 0, "1,3,2,0": 0, "2,0,1,3": 0, "2,0,3,1": 0, "2,1,0,3": 0, "2,1,3,0": 0, "2,3,0,1": 0, "2,3,1,0": 0, "3,0,1,2": 0, "3,0,2,1": 0, "3,1,0,2": 0, "3,1,2,0": 0, "3,2,0,1": 0, "3,2,1,0": 0 } trials = 0 MAX_TRIALS = 100000 while trials < MAX_TRIALS and 0 in test_lists.values(): trials += 1 (l, _) = pi.interleave(r1, r2, self.query, 10) list_str = ",".join(str(a) for a in l.tolist()) self.assertIn(list_str, test_lists.keys()) test_lists[list_str] += 1 for list_str, count in test_lists.items(): self.assertNotEqual(0, count, "Interleave failed for: %s" % list_str) # test interleaving outcomes self.assertEqual( pi.infer_outcome([0, 1, 2, 3], context, [0, 0, 0, 0], self.query), 0, "No clicks, outcome should be 0.") o = pi.infer_outcome([1, 0, 3, 2], context, [1, 0, 0, 0], self.query) self.assertAlmostEquals(o, -0.0486, 4, "Ranker 1 should win (o = %.4f)." % o) o = pi.infer_outcome([0, 1, 3, 2], context, [1, 0, 0, 0], self.query) self.assertAlmostEquals(o, 0.0606, 4, "Ranker 2 should win (o = %.4f)." % o) # from the example in CIKM 2011 weight_str_1 = "0 0 1 0 -1 0" weights_1 = np.asarray([float(x) for x in weight_str_1.split()]) weight_str_2 = "1 0 0 0 -1 0" weights_2 = np.asarray([float(x) for x in weight_str_2.split()]) r1 = ProbabilisticRankingFunction(3, weights_1) r2 = ProbabilisticRankingFunction(3, weights_2) context = (None, r2, r1) o = pi.infer_outcome([0, 1, 2, 3], context, [0, 1, 1, 0], self.query) self.assertAlmostEquals(o, 0.0046, 4, "Ranker 2 should win again (o = %.4f)." % o) # click on one before last document o = pi.infer_outcome([3, 1, 0, 2], context, [0, 0, 1, 0], self.query) self.assertAlmostEquals( o, -0.0496, 4, "Ranker 1 should win with click on doc 0 (o = %.4f)." % o) # click on last document o = pi.infer_outcome([3, 1, 2, 0], context, [0, 0, 0, 1], self.query) self.assertAlmostEquals(o, 0.0, 4, "Tie for click on last doc (o = %.4f)." % o)