def xtest_training_2(self): # trainsg on several queries data = [] d = range(10) for j in d: data.append( [ [j, random.choice([0, 1])] + [random.random() for _ in xrange(self.ninp)] for _ in xrange(self.nq) ] ) print data nepoch = 10000 # number of training epochs rate = 0.1 # learning rate nprint = 1000 # print frequency # compute current cost and estimations for je in xrange(nepoch): # select training sample at random jq = random.choice(d) if je % nprint == 0: # compute cost of a first sample C = ranknet.cost(data[0], self.model, self.sigma) print je, C[0], C[1], C[2] print "w:", self.model.getw() # compute gradients g = ranknet.gradient(data[jq], self.model, self.sigma) # update weights w = la.vsum( self.model.getw(), la.sax(-rate, g) ) self.model.setw(w) # final report for query in data: print "Query: ", query[0][0] C = ranknet.cost(query, self.model, self.sigma) for j in xrange(len(query)): print query[j][1], C[1][j]
def xtest_training_1(self): # trainsg on a single query nepoch = 10000 # number of training epochs rate = 0.1 # learning rate nprint = 1000 # print frequency for je in xrange(nepoch): # compute current cost and estimations C = ranknet.cost(self.query, self.model, self.sigma) if je % nprint == 0: print je, C[0], C[1], C[2] print "w:", self.model.getw() # compute gradients g = ranknet.gradient(self.query, self.model, self.sigma) # update weights w = la.vsum( self.model.getw(), la.sax(-rate, g) ) self.model.setw(w)
def test_gradient(self): # analytical gradient dbpr = ranknet.gradient(self.query, self.model, self.sigma) # numerical gradient dw = 1.e-5 jw = 7 w_u = self.w[:] w_u[jw] = w_u[jw] + dw self.model.setw(w_u) C_u = ranknet.cost(self.query, self.model, self.sigma) w_d = self.w[:] w_d[jw] = w_d[jw] - dw self.model.setw(w_d) C_d = ranknet.cost(self.query, self.model, self.sigma) dnum = (C_u[0] - C_d[0]) / dw / 2.0 print dbpr[jw], dnum
def test_gradient_2(self): # run tests ntest = 100 ninp = 10 nq = 20 nhid = self.nhid nw = (ninp + 1) * nhid + (nhid + 1) * 1 # total number of weights dw = 1.e-6 for j in xrange(ntest): # generate query data query = [ [0, random.choice([0, 1])] + [random.random() for _ in xrange(ninp)] for _ in xrange(nq) ] # get analytical gradient grad = ranknet.gradient(query, self.model, self.sigma) # select weight at random jw = random.choice(xrange(nw)) # numerical derivative w_u = self.w[:] w_u[jw] = w_u[jw] + dw self.model.setw(w_u) C_u = ranknet.cost(query, self.model, self.sigma) w_d = self.w[:] w_d[jw] = w_d[jw] - dw self.model.setw(w_d) C_d = ranknet.cost(query, self.model, self.sigma) dnum = (C_u[0] - C_d[0]) / dw / 2.0 # compare results #self.assertAlmostEqual(grad[jw], dnum, 5, "Run %d: %e %e " % (j, grad[jw], dnum)) print j, jw, grad[jw], dnum
def train(data, opts, net, writefcn): """ Batch training of ranknet model using RProp """ # random permutation of data perm = range(len(data)) random.shuffle(perm) jvalid = perm[0:opts.nvalid] # validation data index jtrain = perm[opts.nvalid:] # training data index nfail = 0 # current number of validation fails mincost = 1.e+100 # current known minimal validation cost wbest = net.getw() # weights for minimal validation error # write out options and initial network writefcn(str(opts) + "\n") writefcn(str(net) + "\n") # initialize RProp working memory rpropmem = ([1.e-5] * len(net.getw()), [1] * len(net.getw())) print "Start batch training, number of queries: ", len(data) print str(opts) print str(net) # training iterations for je in xrange(opts.maxepoch): # validation cost vcost = 0.0 for j in jvalid: c = ranknet.cost(data[j], net, opts.sigma) vcost += c[0] # update best estimates if vcost < mincost: mincost = vcost wbest = net.getw() else: nfail += 1 # check stopping criteria if opts.maxfail > 0 and nfail >= opts.maxfail: break # reset accumulators tcost = 0.0 # training cost G = [0] * len(net.getw()) # accumulated gradient # batch training for jt in jtrain: # take next training query query = data[jt] # compute cost c = ranknet.cost(query, net, opts.sigma) tcost += c[0] # compute gradient g = ranknet.gradient(query, net, opts.sigma) # update batch gradient G = la.vsum(G, g) # print to screen print je, nfail, tcost, vcost, net.getw() # write out sw = str(net.getw()).replace("[", "").replace("]", "").replace(",", "") writefcn("%d %d %e %e %s\n" % (je, nfail, tcost, vcost, sw)) # RProp update steps rpropmem = opt.rprop(G, rpropmem) steps = rpropmem[0] signs = rpropmem[1] # update network weights w = la.vsum(net.getw(), la.vmul(steps, la.sax(-1, signs))) net.setw(w) # training complete print "Training stopped" print "Final cost: ", mincost print "Final weights: ", wbest # return updated model net.setw(wbest) return net
def train(data, opts, net, writefcn): """ Batch training of ranknet model using RProp """ # random permutation of data perm = range(len(data)) random.shuffle(perm) jvalid = perm[0:opts.nvalid] # validation data index jtrain = perm[opts.nvalid:] # training data index nfail = 0 # current number of validation fails mincost = 1.e+100 # current known minimal validation cost wbest = net.getw() # weights for minimal validation error # write out options and initial network writefcn(str(opts) + "\n") writefcn(str(net) + "\n") # initialize RProp working memory rpropmem = ( [1.e-5] * len(net.getw()), [ 1 ] * len(net.getw()) ) print "Start batch training, number of queries: ", len(data) print str(opts) print str(net) # training iterations for je in xrange(opts.maxepoch): # validation cost vcost = 0.0 for j in jvalid: c = ranknet.cost(data[j], net, opts.sigma) vcost += c[0] # update best estimates if vcost < mincost: mincost = vcost wbest = net.getw() else: nfail += 1 # check stopping criteria if opts.maxfail > 0 and nfail >= opts.maxfail: break # reset accumulators tcost = 0.0 # training cost G = [0] * len(net.getw()) # accumulated gradient # batch training for jt in jtrain: # take next training query query = data[jt] # compute cost c = ranknet.cost(query, net, opts.sigma) tcost += c[0] # compute gradient g = ranknet.gradient(query, net, opts.sigma) # update batch gradient G = la.vsum(G, g) # print to screen print je, nfail, tcost, vcost, net.getw() # write out sw = str(net.getw()).replace("[", "").replace("]", "").replace(",", "") writefcn("%d %d %e %e %s\n" % (je, nfail, tcost, vcost, sw)) # RProp update steps rpropmem = opt.rprop(G, rpropmem) steps = rpropmem[0] signs = rpropmem[1] # update network weights w = la.vsum(net.getw(), la.vmul(steps, la.sax(-1, signs))) net.setw(w) # training complete print "Training stopped" print "Final cost: ", mincost print "Final weights: ", wbest # return updated model net.setw(wbest) return net
def train(data, opts, net, writefcn): """ Stochastic gradient training of ranknet model """ # random permutation of data perm = range(len(data)) random.shuffle(perm) jvalid = perm[0:opts.nvalid] # validation data index jtrain = perm[opts.nvalid:] # training data index nfail = 0 # current number of validation fails mincost = 1.e+100 # current known minimal validation cost wbest = net.getw() # weights for minimal validation error print "Start stochastic gradient descent training, number of queries: ", len( data) print str(opts) print str(net) # stochastic gradient training for je in xrange(opts.maxepoch): # validation if je % opts.nepval == 0: # compute validation cost C = 0.0 for j in jvalid: c = ranknet.cost(data[j], net, opts.sigma) C += c[0] # update best estimates if C < mincost: mincost = C wbest = net.getw() else: nfail += 1 # check stopping criteria if opts.maxfail > 0 and nfail >= opts.maxfail: break # print print je, nfail, C, net.getw() # write to report file sw = str(net.getw()).replace("[", "").replace("]", "").replace(",", "") writefcn("%d %d %e %s\n" % (je, nfail, C, sw)) # next training query jq = je % len(jtrain) query = data[jtrain[jq]] # compute gradients g = ranknet.gradient(query, net, opts.sigma) # update weights w = la.vsum(net.getw(), la.sax(-opts.rate, g)) net.setw(w) print "Training stopped" print "Final cost: ", mincost print "Final weights: ", wbest # return updated model net.setw(wbest) return net