Example #1
0
def test_does_model_improve(
    previous_best: Dict[Text, float],
    current_values: Dict[Text, float],
    improved: bool,
    tmpdir: Path,
):
    checkpoint = RasaModelCheckpoint(tmpdir)
    checkpoint.best_metrics_so_far = previous_best
    # true iff all values are equal or better and at least one is better
    assert checkpoint._does_model_improve(current_values) == improved
Example #2
0
def test_on_epoch_end_saves_checkpoints_file(
    previous_best: Dict[Text, float],
    current_values: Dict[Text, float],
    improved: bool,
    tmp_path: Path,
    trained_ted: TEDPolicy,
):
    model_name = "checkpoint"
    best_model_file = tmp_path / model_name
    assert not best_model_file.exists()
    checkpoint = RasaModelCheckpoint(tmp_path)
    checkpoint.best_metrics_so_far = previous_best
    checkpoint.model = trained_ted.model
    checkpoint.on_epoch_end(1, current_values)
    if improved:
        assert best_model_file.exists()
    else:
        assert not best_model_file.exists()