Example #1
0
def trained_moodbot_path():
    train(domain_file="examples/moodbot/domain.yml",
          stories_file="examples/moodbot/data/stories.md",
          output_path=MOODBOT_MODEL_PATH,
          interpreter=RegexInterpreter(),
          policy_config='rasa_core/default_config.yml',
          kwargs=None)

    return MOODBOT_MODEL_PATH
def train_dialogue(domain_file, model_path, training_folder, policy_config):
    return train(domain_file=domain_file,
                 stories_file=training_folder,
                 output_path=model_path,
                 policy_config=policy_config,
                 kwargs={
                     'augmentation_factor': 20,
                     'validation_split': 0.2,
                 })
Example #3
0
def train_dialogue(domain_file='domain.yml',
                   stories_file='data/stories.md',
                   model_path='models/dialogue',
                   policy_config='policy_config.yml'):
    return train(domain_file=domain_file,
                 stories_file=stories_file,
                 output_path=model_path,
                 policy_config=policy_config,
                 kwargs={'augmentation_factor': 50, 'validation_split': 0.2})
Example #4
0
def train_dialogue(domain_file, model_path, training_folder, policy_config):
    return train(
        domain_file=domain_file,
        stories_file=training_folder,
        output_path=model_path,
        policy_config=policy_config,
        kwargs={
            "augmentation_factor": AUGMENTATION_FACTOR,
            "validation_split": VALIDATION_SPLIT,
        },
    )
def train_agent():
    return train(domain_file="domain.yml",
                 stories_file="data/stories.md",
                 output_path="models/dialogue",
                 policy_config='policy_config.yml')