def trained_moodbot_path(): train(domain_file="examples/moodbot/domain.yml", stories_file="examples/moodbot/data/stories.md", output_path=MOODBOT_MODEL_PATH, interpreter=RegexInterpreter(), policy_config='rasa_core/default_config.yml', kwargs=None) return MOODBOT_MODEL_PATH
def train_dialogue(domain_file, model_path, training_folder, policy_config): return train(domain_file=domain_file, stories_file=training_folder, output_path=model_path, policy_config=policy_config, kwargs={ 'augmentation_factor': 20, 'validation_split': 0.2, })
def train_dialogue(domain_file='domain.yml', stories_file='data/stories.md', model_path='models/dialogue', policy_config='policy_config.yml'): return train(domain_file=domain_file, stories_file=stories_file, output_path=model_path, policy_config=policy_config, kwargs={'augmentation_factor': 50, 'validation_split': 0.2})
def train_dialogue(domain_file, model_path, training_folder, policy_config): return train( domain_file=domain_file, stories_file=training_folder, output_path=model_path, policy_config=policy_config, kwargs={ "augmentation_factor": AUGMENTATION_FACTOR, "validation_split": VALIDATION_SPLIT, }, )
def train_agent(): return train(domain_file="domain.yml", stories_file="data/stories.md", output_path="models/dialogue", policy_config='policy_config.yml')