def _write_nlu_to_file( export_nlu_path: Text, evts: List[Dict[Text, Any]] ) -> None: """Write the nlu data of the sender_id to the file paths.""" msgs = _collect_messages(evts) # noinspection PyBroadException try: previous_examples = load_data(export_nlu_path) except Exception as e: logger.exception("An exception occurred while trying to load the " "NLU data.") export_nlu_path = questionary.text( message="Could not load existing NLU data, please " "specify where to store NLU data learned in " "this session (this will overwrite any " "existing file). {}".format(str(e)), default=PATHS["backup"]).ask() if export_nlu_path is None: return previous_examples = TrainingData() nlu_data = previous_examples.merge(TrainingData(msgs)) with io.open(export_nlu_path, 'w', encoding="utf-8") as f: if _guess_format(export_nlu_path) in {"md", "unk"}: f.write(nlu_data.as_markdown()) else: f.write(nlu_data.as_json())
def _write_nlu_to_file( export_nlu_path: Text, evts: List[Dict[Text, Any]] ) -> None: """Write the nlu data of the sender_id to the file paths.""" msgs = _collect_messages(evts) # noinspection PyBroadException try: previous_examples = load_data(export_nlu_path) except Exception: questions = [{"name": "export nlu", "type": "input", "message": "Could not load existing NLU data, please " "specify where to store NLU data learned in " "this session (this will overwrite any " "existing file)", "default": PATHS["backup"]}] answers = prompt(questions) export_nlu_path = answers["export nlu"] previous_examples = TrainingData() nlu_data = previous_examples.merge(TrainingData(msgs)) with io.open(export_nlu_path, 'w', encoding="utf-8") as f: if _guess_format(export_nlu_path) in {"md", "unk"}: f.write(nlu_data.as_markdown()) else: f.write(nlu_data.as_json())