Example #1
0
 def __init__(self,
              language_name,
              max_num_threads=1,
              should_fine_tune_spacy_ner=False):
     super(self.__class__, self).__init__(language_name, max_num_threads)
     self.should_fine_tune_spacy_ner = should_fine_tune_spacy_ner
     self.nlp = self._load_nlp_model(language_name,
                                     should_fine_tune_spacy_ner)
     self.featurizer = SpacyFeaturizer(self.nlp)
     ensure_proper_language_model(self.nlp)
 def __init__(self, config, language_name, max_num_threads=1):
     self.ensure_language_support(language_name)
     self.name = "spacy_sklearn"
     self.language_name = language_name
     self.max_num_threads = max_num_threads
     self.training_data = None
     self.nlp = spacy.load(self.language_name, parser=False, entity=False)
     self.featurizer = SpacyFeaturizer(self.nlp)
     self.intent_classifier = None
     self.entity_extractor = None
     ensure_proper_language_model(self.nlp)
Example #3
0
    def __init__(self,
                 intent_classifier=None,
                 entity_extractor=None,
                 entity_synonyms=None,
                 nlp=None):
        self.extractor = entity_extractor
        self.classifier = intent_classifier
        self.ent_synonyms = entity_synonyms
        self.nlp = nlp
        self.featurizer = SpacyFeaturizer(nlp)

        ensure_proper_language_model(nlp)
    def __init__(self,
                 entity_extractor=None,
                 intent_classifier=None,
                 language_name='en',
                 **kwargs):
        self.extractor = None
        self.classifier = None
        self.nlp = spacy.load(language_name,
                              parser=False,
                              entity=False,
                              matcher=False)
        self.featurizer = SpacyFeaturizer(self.nlp)

        ensure_proper_language_model(self.nlp)

        if intent_classifier:
            with open(intent_classifier, 'rb') as f:
                self.classifier = cloudpickle.load(f)
        if entity_extractor:
            self.extractor = SpacyEntityExtractor(self.nlp, entity_extractor)
Example #5
0
 def __init__(self, language_name, max_num_threads=1):
     super(self.__class__, self).__init__("spacy_sklearn", language_name,
                                          max_num_threads)
     self.nlp = spacy.load(self.language_name, parser=False, entity=False)
     self.featurizer = SpacyFeaturizer(self.nlp)
     ensure_proper_language_model(self.nlp)