Example #1
0
    def test_coin_sample_post(self):
        """Test sampling from posterior distribution"""

        outdir = 'test/tmp/test_hmm/test_coin_sample_post/'
        make_clean_dir(outdir)
        model = make_coin_model()

        # sample states and data
        ndata = 100
        states = list(islice(hmm.sample_hmm_states(model), ndata))
        data = list(hmm.sample_hmm_data(model, states))
        model.prob_emission = (
            lambda pos, state: model.prob_emission_data(state, data[pos]))

        p = Gnuplot()
        p.enableOutput(False)
        p.plot(states, style="lines")

        probs = hmm.get_posterior_probs(model, len(data))
        states2 = [exp(probs[i][1]) for i in xrange(len(data))]
        p.plot(util.vadds(states2, 1.5), style="lines", miny=-1, maxy=12)

        for i in range(2, 10):
            states2 = hmm.sample_posterior(model, ndata)
            self.assertTrue(stats.corr(states, states2) > .5)

            p.plot(util.vadds(states2, 1.5 * i),
                   style="lines",
                   miny=-1,
                   maxy=12)
        p.enableOutput(True)
        p.save(outdir + 'plot.png')
    def test_coin_sample_post(self):
        """Test sampling from posterior distribution"""

        outdir = 'test/tmp/test_hmm/test_coin_sample_post/'
        make_clean_dir(outdir)
        model = make_coin_model()

        # sample states and data
        ndata = 100
        states = list(islice(hmm.sample_hmm_states(model), ndata))
        data = list(hmm.sample_hmm_data(model, states))
        model.prob_emission = (lambda pos, state:
                               model.prob_emission_data(state, data[pos]))

        p = Gnuplot()
        p.enableOutput(False)
        p.plot(states, style="lines")

        probs = hmm.get_posterior_probs(model, len(data))
        states2 = [exp(probs[i][1]) for i in xrange(len(data))]
        p.plot(util.vadds(states2, 1.5), style="lines", miny=-1, maxy=12)

        for i in range(2, 10):
            states2 = hmm.sample_posterior(model, ndata)
            self.assertTrue(stats.corr(states, states2) > .5)

            p.plot(util.vadds(states2, 1.5*i), style="lines", miny=-1, maxy=12)
        p.enableOutput(True)
        p.save(outdir + 'plot.png')
Example #3
0
    def test_norecomb_plot(self):

        k = 50
        n = 1e4
        rho = 1.5e-8 * .0001
        rho2 = 1.5e-8 * 10
        mu = 2.5e-8 * 100
        length = 1000
        arg = arglib.sample_arg(k, n, rho, start=0, end=length)
        muts = arglib.sample_arg_mutations(arg, mu)
        seqs = arglib.make_alignment(arg, muts)

        times = arghmm.get_time_points(ntimes=20)
        arghmm.discretize_arg(arg, times)

        tree = arg.get_marginal_tree(0)
        treelib.draw_tree_names(tree.get_tree(), minlen=5, scale=4e-4)

        # get thread
        new_name = "n%d" % (k - 1)
        keep = ["n%d" % i for i in range(k - 1)]
        arglib.subarg_by_leaf_names(arg, keep)
        arg.set_ancestral()
        arg.prune()

        model = arghmm.ArgHmm(arg,
                              seqs,
                              new_name=new_name,
                              times=times,
                              rho=rho2,
                              mu=mu)
        print "states", len(model.states[0])
        print "muts", len(muts)

        # simulate a new thread
        states = list(islice(hmm.sample_hmm_states(model), 0, arg.end))
        data = list(hmm.sample_hmm_data(model, states))

        seqs[new_name] = "".join(data)
        #alignlib.print_align(seqs)

        thread = [
            model.times[model.states[i][s][1]] for i, s in enumerate(states)
        ]
        p = plot(thread, style="lines")

        probs = arghmm.get_posterior_probs(model, length, verbose=True)
        print "done"

        high = list(arghmm.iter_posterior_times(model, probs, .75))
        low = list(arghmm.iter_posterior_times(model, probs, .25))
        p.plot(high, style="lines")
        p.plot(low, style="lines")

        pause()
Example #4
0
    def test_norecomb_plot(self):

        k = 50
        n = 1e4
        rho = 1.5e-8 * .0001
        rho2 = 1.5e-8 * 10
        mu = 2.5e-8 * 100
        length = 1000
        arg = arglib.sample_arg(k, n, rho, start=0, end=length)
        muts = arglib.sample_arg_mutations(arg, mu)
        seqs = arglib.make_alignment(arg, muts)


        times = arghmm.get_time_points(ntimes=20)
        arghmm.discretize_arg(arg, times)

        tree = arg.get_marginal_tree(0)
        treelib.draw_tree_names(tree.get_tree(), minlen=5, scale=4e-4)

        # get thread
        new_name = "n%d" % (k-1)
        keep = ["n%d" % i for i in range(k-1)]
        arglib.subarg_by_leaf_names(arg, keep)
        arg.set_ancestral()
        arg.prune()

        model = arghmm.ArgHmm(arg, seqs, new_name=new_name, times=times,
                              rho=rho2, mu=mu)
        print "states", len(model.states[0])
        print "muts", len(muts)

        # simulate a new thread
        states = list(islice(hmm.sample_hmm_states(model), 0, arg.end))
        data = list(hmm.sample_hmm_data(model, states))

        seqs[new_name] = "".join(data)
        #alignlib.print_align(seqs)

        thread = [model.times[model.states[i][s][1]]
                  for i, s in enumerate(states)]
        p = plot(thread, style="lines")


        probs = arghmm.get_posterior_probs(model, length, verbose=True)
        print "done"

        high = list(arghmm.iter_posterior_times(model, probs, .75))
        low = list(arghmm.iter_posterior_times(model, probs, .25))
        p.plot(high, style="lines")
        p.plot(low, style="lines")

        pause()
Example #5
0
    def test_coin_post(self):
        """Test that posterior decoding."""

        model = make_coin_model()

        # sample states and data
        ndata = 100
        states = list(islice(hmm.sample_hmm_states(model), ndata))
        data = list(hmm.sample_hmm_data(model, states))
        model.prob_emission = (
            lambda pos, state: model.prob_emission_data(state, data[pos]))

        probs = hmm.get_posterior_probs(model, len(data))
        for col in probs:
            p = sum(map(exp, col))
            self.assertAlmostEqual(p, 1.0)
    def test_coin_post(self):
        """Test that posterior decoding."""

        model = make_coin_model()

        # sample states and data
        ndata = 100
        states = list(islice(hmm.sample_hmm_states(model), ndata))
        data = list(hmm.sample_hmm_data(model, states))
        model.prob_emission = (lambda pos, state:
                               model.prob_emission_data(state, data[pos]))

        probs = hmm.get_posterior_probs(model, len(data))
        for col in probs:
            p = sum(map(exp, col))
            self.assertAlmostEqual(p, 1.0)
Example #7
0
    def test_coin(self):
        """Test that viterbi and posterior coding work well."""

        outdir = 'test/tmp/test_hmm/test_coin/'
        make_clean_dir(outdir)

        model = make_coin_model()

        # sample states
        ndata = 100
        states = list(islice(hmm.sample_hmm_states(model), ndata))
        p = Gnuplot()
        p.enableOutput(False)
        p.plot(states, style="lines")

        # sample data
        data = list(hmm.sample_hmm_data(model, states))

        # viterbi
        model.prob_emission = (
            lambda pos, state: model.prob_emission_data(state, data[pos]))
        states2 = hmm.viterbi(model, len(data))

        # posterior
        probs = hmm.get_posterior_probs(model, len(data))
        states3 = [exp(probs[i][1]) for i in xrange(len(data))]

        # assert that inferences correlates with true state
        self.assertTrue(stats.corr(states, states2) > .5)
        self.assertTrue(stats.corr(states, states3) > .5)

        # plot inference
        p.plot(util.vadds(states2, 1.5), style="lines", miny=-1, maxy=4)
        p.plot(util.vadds(states3, 2.5), style="lines", miny=-1, maxy=4)
        p.enableOutput(True)
        p.save(outdir + 'plot.png')
    def test_coin(self):
        """Test that viterbi and posterior coding work well."""

        outdir = 'test/tmp/test_hmm/test_coin/'
        make_clean_dir(outdir)

        model = make_coin_model()

        # sample states
        ndata = 100
        states = list(islice(hmm.sample_hmm_states(model), ndata))
        p = Gnuplot()
        p.enableOutput(False)
        p.plot(states, style="lines")

        # sample data
        data = list(hmm.sample_hmm_data(model, states))

        # viterbi
        model.prob_emission = (lambda pos, state:
                               model.prob_emission_data(state, data[pos]))
        states2 = hmm.viterbi(model, len(data))

        # posterior
        probs = hmm.get_posterior_probs(model, len(data))
        states3 = [exp(probs[i][1]) for i in xrange(len(data))]

        # assert that inferences correlates with true state
        self.assertTrue(stats.corr(states, states2) > .5)
        self.assertTrue(stats.corr(states, states3) > .5)

        # plot inference
        p.plot(util.vadds(states2, 1.5), style="lines", miny=-1, maxy=4)
        p.plot(util.vadds(states3, 2.5), style="lines", miny=-1, maxy=4)
        p.enableOutput(True)
        p.save(outdir + 'plot.png')